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PREFACE

This report documents the findings and recommendations
of a Rand Corporation study on the health effects of air
pollution. The study was funded by the U S. Environmental Protection
Agency under Cooperative Agreenent No. CR811040-01-0. It represents the
first phase of a three-phase project evaluating the relative abilities
of several analytical approaches to neasure pollution effects. The data
anal yzed were collected in Seattle and Dayton during the Health
I nsurance Experinent (HE) that Rand conducted for the Department of
Heal th and Human Services. The second phase will extend the analysis to
H E data fromother cities and to other data sets. These results wll
then be used in the third phase to neasure the health effects of air
pol l uti on.

Those effects are inportant for fornmulating federal prograns for

pollution control. Conparing the benefits with the costs of contro

will enable federal |awrakers and regulators to decide on a cost-
effective level of control. Since the study considers severa

pol lutants, Phase |l output nay be helpful to regulators who nust decide

where to concentrate scarce pollution control resources. CQur

met hodol ogy and findings should also be of interest to several other
groups:

* Al parties interested in air quality, especially in decisions
regarding the Clean Air Act and regul ations issued under its
authority.

* Epideniologists interested in the health effects of ozone and
other pollutants.

* Statisticians and social scientists interested in the
application of statistical procedures to panel data, especially

procedures designed to draw precise inferences fromlimted
dat a.



SUMMARY

BACKGROUND

It is widely known that air pollution adversely affects health.

The "killer fogs" of London anply denonstrated that very high
concentrations of air pollutants can kill people. Controlled |aboratory
studies have also identified adverse short-term effects of high levels
of pollutants on lung function and other physiological indicators. An
anal ysis done in Southern California found that people living in a
highly polluted area had poorer health than those in a cleaner |ocation.
however, studies of pollution at the nore noderate |evels encountered by
al nost all Americans have been much less conclusive. Some have not been
able to detect significant health effects; others have yielded nixed
results-- relationships in the expected direction in some cases,

associ ations between increasing pollution and inproving health in

ot hers.

The question, then, is why research into air pollution has not been
more successful at measuring health effects. One possible reason is
that many of the studies done to date have had one or nore
met hodol ogi cal shortcom ngs. Sone. for instance, have confounded the
effects of air pollution with those of risk factors such as snoking.

O hers have not accounted for the possibility that people with
respiratory problems might mve to places with cleaner air, leaving a
heal t hi er population behind in the polluted area. Generally, data have
not been available for analyzing day-to-day health responses of genera
popul ations to pollution episodes. Finally, there has been sone
difficulty in deciding what diseases to |ook for as evidence of health
effects.

VWat ever its cause, the lack of reliable assessnents of the health
effects of air pollution has hanpered regulatory agencies interested in
conparing the value of health inprovenents obtained through good air
quality with the costs of controlling pollution.



OBJECTIVES AND APPROACH

This study has two objectives: to examne the health effects of
air pollution on a general population in mderately polluted cities and
to apply a battery of disparate analytical approaches to an especially

attractive set of data collected with the same data methods in two
widely separated cities, Seattle and Dayton

The data we analyzed were collected during The Rand Corporation's
Heal th Insurance Experinent (HE). This data set is attractive for our
present purpose for several reasons:

. It is a sample of the general population, not of sone group
selected for a particular characteristic, e.g., susceptibility
to air pollution.

 Data were collected in cities with pollution levels typical of
US. cities in general.

. Several general health neasures, such as use of nedica
services and time lost to illness, were recorded daily for
several thousand people over three to five years.

e These were supplenented by other general measures, such as
overall health status and lung function, in addition to data on
specific diseases and chronic health problens.

* The data included information on snoking and other risk

factors, and other potential confounding variables and risk
factors.

We enployed a sinple cross-sectional analysis and three pane
anal yses. The cross-sectional analysis estimated pollution effects by
pairing all individual yearly responses (e.g., tinme lost to illness over
the course of a year) with the corresponding individual yearly pollution
exposures. This analysis treated all responses the sane; yearly
responses from the same person and from different people were al
regressed together. The panel analyses, on the other hand, tracked
responses from the sane individual or population over time. These
anal yses were as foll ows:
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* An analysis that used the aggregated exposure and response of
the whole population on a daily basis. Conparing the whole
fixed population with itself fromone day to the next
elimnated any bias resulting from geographical sorting on the
part of sickly people.

¢ An analysis that took advantage of within-city data on
variations in pollution by using the day-to-day health
responses of individuals. This approach enployed recently
devel oped statistical methods designed to draw nmore precise and
consistent estimates. It elimnated geographical sorting bias
by estimating responses for each person separately; thus, each
person acted as his own control. The individual responses were
t hen anal yzed together.

o An analysis that estimated the change in individuals' health
over the entire course of the HE as a function of their
cunul ative exposure to pollution over that period. Using
change in individual health status as the dependent variable
shoul d reduce the sorting bias.

RESULTS
We found the individual day-to-day approach to be the nost
prom si ng. It yielded negative associations of air pollution wth

health for all pollutants exanm ned except for ozone. Half of those
associations were significant at the 1 percent |level. Because this
approach, unlike the others, was applied only in Seattle and because it
is quite expensive, we recommend that it be tested further.

The aggregated day-to-day method yielded a nunber of
counterintuitive results. W do not have a good explanation for the
"m sbehavior" of this approach. The annual cross-sectional analysis and
the analysis of changes in health status over the course of the study
yi el ded generally insignificant results for all pollutants except ozone
We reconmmend further application of these methods also.

Wiile the effects neasured for the pollutants generally varied with
the anal ytical method, ozone was found to have consistently positive
associations with health, nost of them significant at the 10 percent
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level or better. The npbst probable explanation is that at the |ow
| evel s of ozone encountered in these two sites, ozone is correlated with
sonmething else that produces short-run beneficial effects, such as

good weat her.

LIMITATIONS

The nost inportant linitation of the HE was its exclusion of the
elderly, who are often regarded as being ambng the npst susceptible to
air pollution. That exclusion also precluded an examination of the
effects of air pollution on nortality. Finally, the five-year run of
the HE confined the analysis to short- and nmediumterm effects.

CONCLUSION

We have identified a promsing method for measuring the health
effects of air pollution. However, before accepting this nmethod or
discarding others, it is inportant that they all be tested further to
determ ne whether the results we have derived so far are nore generally
applicable. W believe that the nost efficient way to conplete the
testing would be through the further analysis of panel data.
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[. INTRODUCTION

BACKGROUND

It has long been accepted that air pollution degrades the health of
persons exposed to it. Epideniological studies have denonstrated
quantitative relationships between episodes of air pollution and acute
short-term health losses. In laboratory studies, pulnmonary function has
responded negatively in humans occupying closed chanmbers into which air
pol lutants have been punped. As for chronic, long-term effects, the
Chronic Qostructive Respiratory Disease Study conducted by the
University of California Los Angel es, has shown |arger annua
decrements in lung function in persons living in Gendora, California,
than in less polluted Lancaster, California (Detels et al.
forthcoming). Ar pollution caused a nunber of deaths in the infanous
"killer fogs" of London and Donora, Pennsylvania. It is suspected that
air pollution has caused other deaths nore insidiously through chronic
exposure (see, e.g., Lave and Seskin, 1977).

However, many observational studies of the effects of air pollution
have yielded results that have been suggestive at best. They have shown
that a given pollutant may affect a susceptible person under certain
circunstances while having no effects, or even counterintuitive effects,
for others. For exanple, Portney and Millahy (1983) arrived at m xed
results that were quite sensitive to the analytical approach enployed

There may be several reasons why these studies have not been able
consistently to measure the adverse effects of air pollution. First
the measures used may not have been sensitive enough to detect an
effect, or may have been applied where no effect exists. The effect may
be so snmall that it may be obscured by random variation, or it may
require carefully controlled conditions if it is to be measured. |f
only sensitive persons are affected and then only narginally, sanple
popul ations examined to date may have been too small. For instance, if
only one percent of sensitives respond adversely, a population would
have to contain several hundred sensitives to allow detection of the
effect.
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The second possible reason for failure to detect an effect is the
difficulty of defining the effect. Air pollution is not associated with
any specific disease. Respiratory effects of anmbient air pollution have
general ly been observed only in persons with lung function already
conmprom sed by some condition such as asthna. I ndividuals with
uninpaired respiratory systens report a variety of effects of short-
term exposure, including headache, eye irritation, nalaise depression,
and general irritability. Persons exercising in high levels of ozone
may experience nausea. Long-term exposure may have other effects.
Cigarette smoking, which is simlar in some respects to breathing air
pol lutants, increases the long-termrisk of lung and bl adder cancer.

i schem c heart disease, and other conditions. The sum of the effects of
air pollution could be quite large, while none of the diverse individual
effects may be large enough to nmeasure. There is little basis for
grouping the effects prior to analysis, given their diversity. The
common association with a given pollutant that would allow grouping has
not been discovered yet.

The third reason is a conplex of methodol ogical and data problens.
These include the use of data aggregated over populations. unreliable
estimates of pollution exposure, lack of detail on health outcones, and
inconplete data on population characteristics that may be correlated
with air pollution exposure. Many studies have relied on cross-
sectional data on a population's health outcomes, instead of on data
recorded at more than one point in time. Wth cross-sectional data,
pollution effects are underestimated if susceptible persons have noved
to areas with better air quality.

Finally, it is possible that these nmethodological difficulties are
not responsible for the inconsistent and negative results generated so
far. It may be that air pollution has no significant negative health
ef fect on nobst persons exposed to it, at least not at the levels
occurring in nost Anerican cities. (O course, we know that air
pollution at high levels has serious and immediate adverse health
effects.)



Qobvious policy inplications arise fromthe inability to obtain
consistent and reliable neasurements of the adverse health effects of
air pollution, especially at noderate levels. Health officials and
environmental groups have expressed concern over those effects for many
years. This concern has been shared by a broad enough cross-section of
the general public to Iend support to the passage of nunerous federal
state, and local laws regulating air quality. A growing realization of
the burden that those |aws place on the national econony has recently
given rise to a nore critical approach to the data linking air pollution
to adverse health effects. A though Congress mandated clean air policy
with respect to human health, regulatory agencies are increasingly
concerned with conparing the costs of regulation with the benefits,
monetary or otherwise, that can be realized fromit. For exanple, if
ozone had no effects at the levels usually encountered, but noderate
| evel s of suspended particulates proved nmore costly in terms of health
effects than the measures taken to control them then regulators could
focus on reducing particulates. Wth no available systematic
measurenents of the health effects of air pollution, however, it is not
possible to estimate the benefits of air quality regulation--if indeed
there are any.

OBJECTIVES AND METHODS

This report discusses work in progress conducted by The Hand
Corporation under the sponsorship of the C S. Environnental Protection
Agency, the purpose being to examine the effects of air pollution on
several indicators of health outcomes and health-related costs. For
this research we have analyzed data from a panel study of the nonaged
popul ation in two cities with noderate levels of pollution, Dayton,
Chio, and Seattle, Washington. W have been able to examine the
sensitivity of the measured effects to the use of alternative analytica
approaches, in particular panel and cross-sectional techniques.



The Data

W were enjoined by EPA to use avail able data, rather than collect
new data specific to our purpose. The principal advantages of using an
existing data base are that the substantial costs of data collection
have already been incurred, and the study's results will be available
much sooner. There are also serious linmtations, however: (1) The data
may not be ideal because they were collected for another purpose. As we
shall see below, a major drawback of the general population data sets is
the lesser quality of the air pollution exposure measures that we can
derive; the neasurement error in the exposure estimates will yield
bi ased estimates of the adverse effects of air pollution. (2) The
popul ation studied may not be fully appropriate to the analysis at hand.
(3) Using existing data sets means that we are conducting on
observational study, and such studies can yield estimates that are badly
bi ased (and in sone cases, the bias is of indetermnate sign, a priori).
In the case of air pollution studies, the risk is that individuals who
are nore susceptible to air pollution will nove to less polluted areas
(e.g., Tucson), thus confounding the observed air pollution exposure
with the unobserved sickliness of the individual. That confounding will
yiel d underestimtes of the adverse effect of air pollution.

Air quality data analyzed in this research are drawn from Storage
and Retrieval of Aerometric Data (SAROAD) and sonme state agencies.

Heal th outcome data are drawn from Rand's Health insurance Experinent
(H'E), conducted from 1974 to 1982 under a contract with the C S
Department of Health and Human Services. HE data were collected at six
sites around the country. The analysis in this report is limted to
data fromthe two largest sites, Seattle and Dayton.

W used the H E data for several reasons. First, they include
measurenents of the use of nedical services, and time |lost due to illness
(e.g., fromwork or school) or due to restricted activity. Thus. we
can examne the effects of air pollution on several health outcones.
Second, the data are nmeasured continuously or repetitively over tine,
enabling us to assess the sensitivity of the results to using both cross-
sectional and panel approaches to estimating the adverse effects of air
pol lution. Third, it contains data on the preval ence of diseases at the



outset of the experiment and on their incidence over the course of the
experiment, and on the occurrence of new episodes or exacerbations of
i Il nesses. Information is available on neasures of physiological variables
over tine, e.g., lung function at entry to and exit fromthe study. Thus,
the HE data allow the assessment of physiological changes that may be
significant but too small to result in disease within the course of the
experinent. The H E also includes data on socioeconom ¢ status, health
status, health habits (e.g., snoking), and race and other denographic
variables. Such variables are inportant because they include risk factors
and confounding variables that must be controlled for if the effects of air
pollution are to be properly estimated. Fourth, outcomes are recorded
as they occur, allowing the elucidation of short-term effects through
correlations with daily pollution and weather data.

O her data sets were evaluated for use in this study. The reasons
for not accepting themare given in App. A

Despite its advantages. the H E does have four major limitations.
First, the sanple excludes individuals who are over 62, eligible for
Medicare, on Medicare disability-. severely handicapped, in the nilitary
or in households in the top 3 percent of the income range. The elderly
and the ill are believed to be especially susceptible to the adverse
effects of air pollution. As a result, estimates based on the HE
understate the full social effects of air pollution. Conclusions about
threshold concentrations required for adverse effects may also be
bi ased. Second, H E sites were chosen for their variation in access to
health care services. This linits the validity of intersite conparisons
of pollution effects, since pollution effects would be confounded with
variations in site characteristics that affect the use of services
(e.g., tinme delay in getting a doctor's appointnent). Third, we had to
infer pollution exposure based on available anmbient air quality data,
because the H E data had already been collected. Thus, we could not
obtain the nore reliable estimates of individual exposure that could be
derived from a nmicroenvironnental analysis or personal nonitoring. As a
result, our estimates of the response to air pollution will be biased
systematically toward zero (i.e., finding no effect). Fourth, this is
an observational study rather than a randonmized trial. To the extent

that individuals may nove or alter their behavior to mnimze the adverse



-6 -

effects of air pollution, we will systematically understate the effects
of air pollution. In some of the results reported below, we have used
panel data techniques to reduce this bias, but we cannot be sure that
the techniques conpletely solve this problem

The HE and the variables drawn fromit are discussed fully in Sec.

Analytical Approach

In assessing the adverse effects of air pollution on health
out conmes--use of services, time lost to illness, and health status--
there are two major dinensions over which we have varied our analysis.
The first dimension is the choice between cross-sectional and panel
approaches to the estimation. The second is the length of tine over
which we look for the effects of pollution.

Cross-sectional vs. Panel Approaches. I n our analysis, we have
used both cross-sectional and panel approaches in estination. In the
cross-sectional approach, we assign LO each individual measures of his
air pollution exposure based on the ambient air pollution at his work
and hone locations. By conparing the health outcomes of different
people with different exposures, we can estinate the association of air
pollution with those outcones.

The cross-sectional approach is sinple, but may lead to
msestimtes of the effect of air pollution for several reasons. The
most inportant is that people may have sorted thenselves out across air
pollution zones based on their sickliness or other unobservable or
i mperfectly observable characteristics. That is, cross-sectional data
may lead to biased estimates if the unobservable characteristics of the
popul ations studied are correlated with the observed explanatory
variables, including air pollution exposure.

For exanple, if air quality is too poor, individuals susceptible to
air pollution's adverse effects may |eave the area studied or die. The
studies of respiratorily inpaired persons in Tucson by Lebowitz,
Knudson, and Burroughs (1978) includes people who noved there in part
because of the perceived benefits of desert air for persons with |ung
probl ens. In our study, asthmatics and other susceptibles may nove from
the nore to the less polluted areas of the city. In either case. areas



with different levels of pollution would have a different mix of healthy
and sick individuals, with the cleaner areas having nore sick people.
Comparing health outcomes cross-sectionally would understate the adverse
effects of air pollution, because the unobserved extra sickliness in
cleaner areas would dilute the effect of air pollution on the estinates.
In fact, if the geographical sorting is pronounced, we could find that
higher air pollution is associated with "better" outcones, e.g., lover
use of medical services.

Cross-sectional estinmates can also be biased in the other
direction, that is, they can overstate the effects of air pollution.

For exanple, if snokers are less likely to nove away from snmoggy areas
and if snoking behavior is inperfectly controlled for in the analysis,
then cross-sectional estimates would attribute part of the adverse

ef fect of snoking behavior to air pollution.

In either case, cross-sectional data can lead to biased estinates.
Wthout further infornmation, the researcher cannot bound or estimate the
magni tude of the bias. nor determine its direction.

Despite the problem of bias from geographical sorting, we use a
cross-sectional approach as one way to analyze the effects of air
pol lution on each individual in the sample.®' Each point on our
regression line thus pairs one person's health outcome in a given year
of the study with his or her exposure to air pollution that year. By
conmparing those results with our panel results, we can get sonme idea of
the enpirical value of the former, which could be useful in assessing
the validity of other cross-sectional studies.

In the panel analyses, we use the presence of repeated observations
on each individual to control for unobservable individual
characteristics. Thus. in a panel study, we do not have to rely on the
untestabl e cross-sectional assumption that the unobserved
characteristics are uncorrelated with the observed independent
variables, including air pollution exposure.

YQur approach is not always a pure cross-sectional one. In the
anal ysis of annual outcones, we use data from the sane people in
different years. However, the data are analyzed using the sane
assunption used in cross-sectional analysis, that the error termis
i ndependent of the covariates, especially air pollution.



Panel analyses have three other major advantages over a Cross-
sectional study. First, our panel studies can take advantage of finer
detail on timng of health events than do cross-sectional studies. The
finer detail permts better estimates of the weather and air pollution
exposure than is possible with data aggregated over |onger periods of
time. Less precise estimates of air pollution can result in
underestimates of its effects on health. But, second, with a panel
study, we can still check any assunptions about the differences between
short- and long-term effects by examning the response in daily as well
as annual data. Third, our panel analyses retain the novers and deaths
occurring in the sanple after baseline measurenents, whereas in a pure
retrospective cross-sectional design, those who noved or died are not
around when the data are collected.

Neverthel ess, panel studies have two major shortcomngs relative to
cross-sectional studies. First, due to the higher cost of collecting
panel data, panel studies typically have fever participants than can be
studied in a cross-sectional analysis. This smaller sanple size reduces
the precision available for detecting adverse effects. Second, pane!
met hods, such as before-and-after conparisons, are limted to detecting
short- and internediate-term effects, because the tinme frame for the
panel is frequently only a few years.

Duration of Effect. W have used a variety of tinme frames for our
anal yses, because air pollution may result in both short-term and
internediate-term adverse effects (long-term effects cannot be anal yzed
using these data, which were collected over a three-to-five-year
period). A concern over irreparable damage has led to some enphasis on
intermediate to long-term effects in studies of susceptibles and
nortality However, we need to remenber that nmgjor social costs may
arise from short-term responses in a general population. The |osses per
individual may be small in a general population, but the |arge number of
i ndi vidual s can make for a large total |oss.

in what follows, we have exanmined the effects of pollution exposure
on use of services and tine lost to illness in ternms of both short-
term responses (daily responses to daily air quality variation). and a
somewhat |onger-term annual analysis. W have also exam ned the effects
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of pollution exposure on health status in terns of both short-term
responses (air quality in the nost recent nonth) and intermediate-term
responses (average exposure over 3 two-and-a-half to five-year period).

Specific Approaches Employed. W have not taken all possible
conbi nati ons of outcomes and time frames for both cross-sectional and
panel approaches. Sone conbinations were precluded by data limtations.
For exanple, we do not have daily data for our general health status and.
lung function neasures. Some conbinations were onitted because the cost
woul d have exceeded any likely benefit. For exanple, a cross-sectiona
approach to short-termdaily fluctuations in time lost to illness seened
undul y expensive.

Four sets of analyses are reported below. The first, in Sec. III
is essentially a cross-sectional approach to annual responses for use of
medi cal services and time lost to illness

The second set, in Sec. 1V, considers the effect of recent air
pollution levels on a set of daily observations on the proportion of the
population ill or visiting a health provider. There is thus one data
point for the whole population for each day of the study. Because the
population is fixed over time and because individuals are not being
conpared with other individuals, we avoid the problem of there being
unobserved popul ation characteristics (e.g, susceptibility:) that are
correlated with pollution exposure, e.g., through geographical sorting
(The population effectively acts as its own control.)

Qur third set of analyses, in Sec. V, exanmines the effect of air
pollution on a set of daily observations for each person individually,
rather than collectively. Because we follow an individual over tine, we
again avoid the problem of unobserved characteristics that are
correlated with air pollution exposure. This analysis has the potentia
for inmproving on the second approach because it uses exposure estinates
that are tailored to the individual; this should reduce any misestinate
from using a single air pollution exposure value for a whole
metropolitan area

Qur final approach, in Sec. VI, examnes the effects of air
pol lution exposure (cumulative since the beginning of the study) on
i ndi vidual health status at the end of the study. Each individual's

exit health is regressed on air pollution and entrance health. This
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variant on a before-and-after conparison nets out any unobservabl e
characteristics that may be correlated with air pollution exposure

W apply each of these four methods to estimate the effects of air
pol lution on one or nore of the followi ng health variables:

* Probability of use of any outpatient health care services

* Expenditures on outpatient health care services per user

 Tinme lost to illness (including time lost from work, school
and other usual activity)

e A subjective neasure of general health (tested for its
reliability)

* Lung function

In the next section, we discuss the data we analyzed. Subsequent
sections describe each of our nmethods and their results.

LIMITATIONS

In examning our results and conclusions, it is well to keep the
limtations of our study in mnd. The nost inmportant is that this is an
observational and not an experinental study. Although the study relies
on data from a randonized study, the randonization was for health
insurance, not air pollution. Fanilies with nenbers who are susceptible
to air pollution may choose to live in less polluted areas. As
di scussed above, this can lead to bhiased results. \Wile our pane
techniques are an inprovenent over cross-sectional approaches in
reduci ng geographical sorting bias, they do not yield the kind of safe
concl usions that can be drawn from experinents.

Second, in this study, we have not been able to exanine the effect
of air pollution on life expectancy. The sanple is not large enough to
l ook at nortality in the. nonaged The exclusion of the aged makes it
doubly difficult to discern changes in survival, by reducing the sanple
size and by excluding the group at highest risk. In addition, the
exclusion of the elderly neans that our estimtes of other health effects
are understated. For exanple, the elderly are believed to be especially
susceptible to air pollution. They also account for a disproportionate
share of total time lost to illness, and of medical expenditures.
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Third, our measure of exposure to air pollution is based on anbient
monitoring sites linked to residence and work |ocations. The measure
could be inproved if we had data on housing and work characteristics
(e.g. type of space heating or air conditioning), or if we knew actual
i ndi vi dual exposures directly. The error in our neasures probably
bi ases our estinmates of the effects of air pollution toward zero.

Finally, this report is linmted to tw sites; hence, at this point
we do not know how generalizable our results are.



- 12 -

[I. DATA AND SAMPLE

The data for this analysis are drawn fromtw sources. First, the
source of data on sociodenographic variables, health status and habits,
use of health services, and time lost due to illness is the Health
I nsurance Experinent (HE). Second, the sources of data on air quality
and weather are Storage and Retrieval of Aerometric Data (SAROAD), the

Washington State Inplementation Plan (SIP) data bases, and the Nationa
\Weat her Service

THE HEALTH INSURANCE EXPERIMENT

The HE is a random zed trial of the effects of different health
i nsurance arrangements on the demand for health services and the health
status of individuals. The HE enrolled famlies in six sites
Dayton, Chio; Seattle, Washington; Fitchburg, Massachusetts; Franklin
County, Massachusetts; Charleston, South Carolina;, and Georgetown
County, South Carolina. This analysis uses data fromthe Seattle and
Dayton sites. In each site, fanilies enrolled for either three or five
years.

Fam lies participating in the experiment were assigned to 14
different fee-for-service or two prepaid group practice insurance plans.
The fee-for-service plans had different |levels of cost sharing, which
varied over two dinensions: the coinsurance rate and an upper limt on
out - of - pocket expenses. The coi nsurance rates (percentage paid out-
of -pocket) were 0, 25, 50, or 95 percent for all health services. Each
plan had an upper limt (the maximum dollar expenditure or MXE) on out-
of - pocket expenses of 5, 10, or 15 percent of famly incone, up to a
maxi mum of $1,000. Beyond the MDE, the insurance plan reinbursed al
expenses in full. One plan had different coinsurance rates for
inpatient and ambul atory nedical services (25 percent) than for denta

!Newhouse (1974) and Brook et al. (1979), provide fuller
descriptions of the design. Newhouse et al. (1979) discuss the
measurenent issues for the second generation of social experinents, to

which the H E belongs. Ware et al. (1980) discuss many aspects of data
col l ection and neasurenent for health status.
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and anbul atory nental health services (50 percent). Finally on one
plan, the famlies faced a 95-percent coinsurance rate for outpatient
services, subject to a $150 annual limt on out-of-pocket expenses per
person ($450 per fanmily). In this plan, all inpatient services were
free, so that, in effect, this plan had an outpatient individua
deductible. Al plans covered the same wide variety of services.?

Two groups were enrolled in a prepaid group practice or health
mai nt enance organi zation (HMJ) in Seattle only. The HVMO in this study
is Goup Health Cooperative of Puget Sound (GHC), a nonprofit
organi zation that has been operating in the Seattle metropolitan area
since 1946. The first of these two groups is the GHC experinentals,
which is a random sanple of the Seattle population that was not enrolled
in GHC at the beginning of the experiment. This group received all
services free of charge at GiHC. If GHC did not provide the service, the
plan fully covered services received outside GHC. The second group is
the GHC controls, which is a random sanple of famlies that had been
enrol led at GHC for at |east one year in 1976. The GHC control group
received all care at GHC free of charge except for limted cost sharing
on drugs, supplies, and outpatient mental health services.

To study nethods effects, the HE had three other random zed
subexperi ments. First, to increase precision in measuring changes in
health status, sone households were given a preexperinental physical
examnation; to test for a possible stinulus to utilization, the
remai ni ng househol ds received no exanmi nation. Second, to nmeasure sick-
and work-loss days, and telephone utilization, sone households filled
out a diary on contacts with the health care systemand on time lost to
illness. To test for a stimulus of reporting on the use of services,
some households filled out no forns, sone filled them out weekly, and
some biweekly. Third, to test for transitory aspects of the study, some
househol ds were enrolled for three years, others for five years.

2See Clasquin (1973) for a discussion of the reasons for the HE
structure of benefits. Nonpreventive orthodontia and cosnetic surgery
(not related to preexisting conditions) were also not covered. In the
case of each exclusion, it is questionable whether anything could have
been | earned about steady-state demand during the three-to-five-year
lifetime of the experiment. Also excluded were outpatient psychotherapy
services in excess of 52 visits per year per person.
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Famlies were enrolled as a unit with only eligible menbers
participating. No choice of plan (or other experinental treatment) was
offered; the famly could either accept the experimental plan or choose
not to participate. To prevent refusals, famlies were given a |unp-
sum payment equal to their worst-case financial risk associated with the
plan; thus, no famly was worse off financially for being in the study.?

In Seattle, we found no unintended differences between the group
that accepted and the group that refused the offer to participate in the
study; see Manning et al. (1984). A simlar analysis shows no
difference in Dayton, see Newhouse et al. (1982).

THE SAMPLE

The sanple is a random sanple of each site's population, but the
follow ng groups were not eligible: (1) those 62 years of age and.

ol der; (2) those with incomes in excess of $25,000 in 1973 dollars (or
$56,000 in 1983 dollars); (3) those eligible for the Medicare disability
program (4) those in jail and those institutionalized in |ong-term
hospitals; (5) those in the nmilitary or their dependents; and (6) those
with service-related disabilities.

The sanple used in this analysis includes enrollees during each
full year that they participated. W excluded data on partial years of
participation by newborns, adoptees, suspended participants (e.g., those
who joined the mlitary), participants who left the study before its
conpletion, and people who nmoved out of the Seattle and Dayton areas.®
A person who, for exanple, attrited in year 2, was included in year 1 if

3Families were assigned to treatnents using the Finite Selection
Model (Morris, 1979). This nodel is designed to achieve as nuch bal ance
across plans as possible while retaining random zation; that is, it
reduces correlation of the experinental treatments with health,
denographic, and econom c covari ates.

The fam ly's nonexperinental coverage was naintained for the famly
by the HE during the experinental period with the benefits of the
policy assigned to the HE. If the famly had no coverage, the HE
purchased a policy on their behalf. Thus, no fanily could becone
uninsurable as a result of their participation in the study.

“Out-of-area noves were excluded so that we could inexpensively
cal cul ate the exposure of each participant.
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he participated for all of that year. W excluded such cases because
the statistical mpbdels used in this study for expenditures require equa
tine periods for each observation; that is, because they do not allow
convol ution of observations. Thus, the people who participated for only
part of a year could appear to be different when their underlying
behavior was in fact the sane. The onission of individuals enrolled for
a part year does not bias our conparisons because these individuals used
health services at the sane rate as full-year individuals with simlar
characteristics (see Manning et al., 1985, for Seattle; a simlar
analysis is under way for other sites).

For specific analyses, the sample was further reduced because of
mssing data. For exanple, in the analysis of time |ost due to illness,
we include only those individuals who filed health diaries for two
years. Individuals who were randomy assigned to the no-health-diary
subexperinent or who did not file the required forms were excluded

Independent Variables

W used five groups. of independent variables: insurance plan and
other experimental treatments, health status measures, snoking
variabl es, soci odenographic and econom c neasures, and neasures of
exposure to various pollutants. These variables are described bel ow.

Insurance Plan Variables. W have used dunmy variables to
represent the insurance plans, one for each of the follow ng insurance
plans: the GHC controls; any fee-for-service plan with out-of-pocket
cost-sharing (25-percent, 50 percent, or 95 percent) for the fanmily; and
a fee-for-service insurance plan with a fanmily coinsurance rate of zero
percent (free care). The GHC experinental plan was the onmitted group in
Seattle and the free fee-for-service plan was the onmitted group in
Dayt on agai nst which conparisons were nade

Measures of Health Status. W used four measures of health status
to increase the precision of our estinmates of the consunption of
anbul atory nedical services: (1) general health perceptions; (2)
physical limtations; (3) chronic disease status; and (4) nmental health
status. Each of these measures is based on the self-admnistered
Medi cal History Questionnaire for individuals 14 years or ol der.
Measures for children are based on questionnaires filled out by parents.



- 16 -

All of the health status data used in this report were collected at the
begi nning of the study; a summary description of each is presented
bel ow.

The General Health Index (GH) is a continuous score from 0 through
100 based on 22 questionnaire items for individuals aged 14 and over and
7 itens for children (aged less than 14). The itens measure perceptions
of health at present, in the past, and in the future; the items also
measure believed resistance to illness and health worry. GH refers to
health in general and does not specify a particular conmponent of health.
The construct is a subjective assessment of personal health status. The
reliability and validity of GH have been extensively studied and
docunented (Ware, 1976; Davies and Ware, 1981; and Eisen et al. (1980)).

One reason we chose the GH was that the results of extensive
validity testing could be used to place sone perspective on observed
differences resulting fromair quality. For instance, the inpact of
chroni c diseases, everything equal, is 5.6 points for hypertension and
10 points for chronic obstructive pul nonary disease or diabetes (Brook,
1983). People with FEVl/predicted FEVl5 of 45 percent or less had a CGH
25 points |ower on average than those with 91 percent or nmore. The
death rate in the study was 25/1,000 for those with GH under 63
6/1,000 for those with GH from63 to 76 and 1/1,000 for those with CGH
from 76 to 100.

The physical limtations neasure is scored dichotonously (PHYSLM
1 =linited, O otherwise) to indicate the presence of one or nore
limtations due to poor health. It is based on 12 questionnaire itens
for adults and 5 itens for children measuring four categories of
limtations: self-care (eating bathing, dressing); mobility (confined
or able to use public or private transportation); physical activity
(wal ki ng, bending, lifting, stooping, clinbing stairs, running); and
usual role activities (work, home, school). The reliability and
validity of these measures have been studied and docunented by Stewart
et al. (1977, 1978, 1981a, 1981b), and Eisen et al. (1980).

*Forced expiratory volume in one second is a measure of |ung
function.
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The disease neasure is a sinple count of the nunber of diseases or
problens (out of a possible 26), for individuals aged 14 or nore
(Manni ng, Newhouse, and Ware, 1982). The disease list includes kidney
di sease and urinary tract infections, eye problems, bronchitis, hay
fever, gum problens, joint problens, diabetes, acne, anema, heart
probl ems, stomach problens, varicose veins, henorrhoids, hearing
probl ens, high blood pressure; hyperthyroidism and ten other diseases
or problens.

The Mental Health Inventory (MH) is based on 38 questionnaire
itens measuring both psychol ogical distress and psychol ogical well-
being, as reflected in anxiety, depression, behavioral and enotiona
control during the last nonth, general positive effect and interpersonal
ties. The reliability and validity of this neasure has been studied and
documented by Veit and Ware (forthcoming); Ware, Veit, and Donald
(forthcoming); Ware et al. (1979, 1980); and Wllians et al (1981). W
used a simlar construct for children aged 5 to 13, based on 12
questionnaire items (Eisen et al., 1980).

Smoking Variables. The nodel used in our analysis also contained
covariates for smoking status. These included dunmy variables for
whet her an individual was a cigarette snoker, an exsnmoker, a never
snoker in a famly of a snoker, and a never snoker in the household of
an exsmoker. A never snoker in a famly of never snokers is the omtted
group. The categories are defined to be nutually exclusive.

Other Covariates. The mpdel used in our analysis also included
covariates for age, sex, race, famly income, and famly size. Wth the
exception of famly size, the data were collected before or at
enrol l ment in the study.

Table 2.1 provides neans for a nunber of these variables for the

enrol | ment sanmple. Additional details on health status are available in
Sec. V.
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Table 2.1

SAMPLE CHARACTERI STI CS

Dayt on Seattle

St andard St andard

Vari abl e N Mean Devi ation N Mean Devi ation
Age 1139 6. 069 17. 141 3095 25.535 15.978
Femal e 1139 0.524 0.500 3095 0.512 0. 500
EDUCDEC 1139 12.325 2.692 3095 13.012 2. 409
I ncone[|] 1019 29600 13990 2986 37000 18300
AFDC 1019 0. 048 0.214 2986 0. 057 0. 230
Bl ack 1139 0.111 0.314 3095 0.027 0.161
Family size 1139 3.873 1. 780 3095 3.395 1.578
GH NDX[ 2] 1139 73.183 7.818 3059 73. 476 15.539
DI SEA[ 3] 530 13.732 9. 585 2178 11.900 8.626

NOTE: N indicates nunmbers of conplete users.
[1] I'n June 1984 dollars.

[2] In Dayton, this is a replacenent value based on responses
to questions about health, pain, and worry.

[3] Count of chronic health problems, adults only.

Exposure Estimation

Assessing the relationships between health outcones and exposure
requires an estinmate of the exposure of individuals to air pollution.
I deal |y, personal nonitoring and mcroenvironmental analysis in
wor kpl ace, home, and other places in which these individuals spend tinmne
could have provided this estimte. Unfortunately, we could not
personal ly nonitor the participants or conduct surveys to obtain these
better estimates, because this research was initiated well after the HE
data collection effort ended. Instead, we used the SAROAD data base to
estimate the exposure for each residence and work |ocation based on air
pollution levels at nearby local monitoring stations.

Data Sources. The HE provided data on the residence |ocation zip
code of each participant at his entry into the study., and the date and
| ocation of each new pernanent change in address thereafter. The HE
al so provided data at intervals of approximtely every six nonths on the
| abor force status of all adults, and the zip code for each enpl oyer on
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the date surveyed. W use these two sets of data to inplement a crude
m croenvi ronmental anal ysis.

We obtained daily data on air pollutants from SAROAD for the
criteria pollutants (total suspended particulates (TSP), sulfur dioxide,
nitrogen dioxide, oxidants, and carbon nonoxide) for the Seattle-Everett
and Dayton areas, including some outlying areas. W obtained data on
the coefficient of haze and additional NO2 data from the Department of
Ecol ogy for the state of Washington. The National Wather Service
provided data on precipitation and tenperature (mnimum maxi num and
average daily values). In each case, the data covered the sane period
of tine as the experimental period of the HE, which was Novenber 1974
t hrough February 1980 in Dayton, and January 1976 through Septenmber 1981
in Seattle.

The nunber of nonitoring sites for each pollutant varied by city
and over time. W were able to use data fromonly a subset of the
stations. Some stations were operational for only part of the period,
and sone had inconplete data when operational. To avoid possible data
quality problenms, we used only those stations which consistently
reported air pollution |evels over a sufficiently long tine period. CQur
criteria for consistent reporting were that the nonitoring site had to
have at |east six consecutive nmonths of data for the pollutant of
interest, and that each month had to include at least fifteen days of
data. In the case of TSP, we generally accepted nonths with at |east
four 24-hour measurenents, because TSP is routinely neasured every six
days.®

Missing Values. W did accept data fromnonitoring sites with
m nor breaks or gaps in their daily or hourly val ues, because nonitoring
sites are down for routine maintenance. For nonitoring sites with
mssing hourly or daily values in a specific day, we replaced the
m ssing values with inputed val ues based on the diurnal pattern of
pollution levels, estimated from an additive two-way ANOVA nodel that
identified the diurnal pattern and the effect of the day. For TSP, we

used a simlar nmodel to inpute missing daily values based on the day of
the week pattern.

fWe made exceptions to the general criteria on the nunber of days
in a nmonth when the station was the only one reporting in that nonth.
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Estimating Daily Exposures. The process for estimting daily
exposures for each person involved three steps: calculating daily
summaries for each monitoring site, creating a location history for each
i ndi vidual, and matching each individual's location history to
moni toring sites.

For each nonotoring site collecting hourly data, we calcul ated
daily summaries of the pollutant |evels. These included daytinme and
nighttime averages and maxi nuns. The daytine val ues were based on
readings from8 AMto 6 PM and nighttine fromfrom6 PMto 8 AM The
anal ytic day was defined as the period from6 PM on the previous
cal endar day to 6 PMon the day in question. This seemed to be a
behaviorally nore meaningful definition of a day than the usual m dnight
to mdnight definition

We developed a daily tine series for each individual's daytime and
nighttine locations, using the residence and work data described above
For the nighttine location, we used the home zip code, because our work
data did not include information on which shifts were worked. For the
daytime |ocation for workers, we used the work zip code of the enployer
mentioned on the tenporally nearest survey of work information. For
children and for adults without paying jobs (e.g., housew ves and the
retired), we used the home zip code. W assumed that children attended
nei ghbor hood schools.  For all individuals, we used the hone zip code
for the weekend. The H E data on enploynment did not provide the
information necessary to do a finer breakdown of work days and hours.

We then linked, day by day, each person's daytime and nighttine zip
code to the daily summary for the geographically nearest monitoring site
for each pollutant. The distance between the individual zip code and
the nmonitoring station was neasured using the latitude and |ongitude of
the zip code's post office and the nonitoring site's location. Al though
it would have been preferable to match the popul ation center of mass for
each zip code, we believe that the approximtion error is mnor in our
case. Zips with high population densities have small areas, leading to
only a small error in distance. Zip codes with |ow densities and |arge
areas were typically in rural areas with clean air and few alternatives
for matching. Tables 2.2 and 2.3 show the frequency of individuals by
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Table 2.2

SEATTLE RESI DENCE ZI P CODES AND MAP COCRDI NATES

Zip Code Count Per cent Latitude Longi t ude

98002 228 7.37 47. 31 122. 23
98003 103 3.33 47. 31 122. 31
98004 45 1.45 47.58 122. 17
98005 9 0.29 47.61 123.15
98006 44 1.42 47.61 122. 15
98007 101 3.26 47.61 122. 15
98008 27 0. 87 47.50 122. 23
98011 78 2.52 47.72 122. 22
98020 155 5.01 47.79 122. 34
98022 3 0.10 47.21 121.99
98027 35 1.13 47.56 122. 07
98031 124 4.01 47. 40 122. 25
98033 188 6. 07 47.68 122.19
98036 94 3.04 47. 84 122. 29
98040 72 2.33 47.58 122.19
98043 56 1.81 47 .80 122. 30
98047 25 0.81 47. 27 122. 25
98052 49 1.58 47. 64 122. 15
98055 135 4.36 47.48 122. 20
98062 4 0.13 47. 47 122. 36
98072 2 0.06 47.75 122. 16
98100 3 0.10 47.63 122. 33
98101 5 0.16 47.61 122. 33
98102 29 0.94 47.63 122.31
98103 101 3.26 47.68 122. 34
98104 3 0.10 47.60 122. 33
98105 42 1.36 47. 66 122. 31
98106 63 2.04 47.52 122. 35
98107 22 0.71 47.68 122. 37
98108 18 0.58 47.52 122. 30
98109 24 0.78 47.59 122. 36
98111 3 0.10 47.63 122. 33
98112 35 1.13 47.63 122. 33
98115 103 3.33 47.68 123. 30
98116 38 1.23 47.55 122. 38
98117 46 1.49 47.63 122. 33
98118 61 1.97 47.56 122.28
98119 48 1.55 47.63 122. 36
98121 3 0.10 47.61 122. 34
98122 56 1.81 47.61 122. 31
98125 57 1.84 47.71 122.30
98126 12 0.39 47.54 122. 37
98133 60 1.94 47.73 122. 34



- 22 -

Table 2.2 (cont.)

Zip Code Count Per cent Latitude Longi t ude
98136 51 1.65 47.53 122. 39
98144 59 1.91 47.59 122. 29
98146 27 0. 87 47. 48 122. 35
98148 5 0.16 47. 44 122. 31
98155 37 1.20 47.75 122. 29
98166 48 1.55 47.43 122.34
98168 131 4,23 47. 47 122. 30
98177 40 1.29 47.73 122. 36
98178 35 1.13 47.50 122.25
98188 63 2.04 47. 40 122. 28
98199 29 0.94 47. 65 122. 40
98201 40 1.29 47.96 122.23
98203 56 1.81 47.97 122. 20
98204 62 2.00 47.92 122. 20
98206 3 0.10 47.96 122. 23




- 23 -

Table 2.3

DAYTON RESI DENCE ZI P CODES AND MAP COCRDI NATES

Zip Code  Count Per cent Latitude Longi t ude

45305 44 3.86 39. 64 . 84. 07
45324 47 4.13 39. 80 84. 02
45342 52 4.57 39. 66 84.27
45377 60 5. 27 39. 89 84.19
45402 2 0.18 39.76 84.19
45403 45 3.95 39.76 84. 15
45404 15 1.32 39.79 84.17
45405 52 4.57 39.79 84. 22
45406 15 1.32 39.79 84. 24
45407 34 2.99 39.76 84. 22
45408 32 2.81 39.74 84. 22
45410 19 1.67 39.75 84. 16
45414 44 3.86 39. 82 84.21
45415 47 4.13 39. 82 84.25
45417 19 1.67 39.75 84. 25
45418 32 2.81 39.72 84.25
45419 78 4.85 39.71 84.16
45420 65 5. 71 39.72 84. 14
45424 157 13.78 39. 83 84. 14
45426 14 1.33 39. 80 84. 29
45427 15 1.32 39.75 84. 28
45429 44 3.86 39. 68 84.15
45431 24 2.11 39.77 84. 10
45432 78 6. 85 39. 74 84. 10
45439 9 0.79 39.69 84. 22
45440 19 1.67 39. 66 84.11
45449 7 0.61 39. 67 84. 24
45459 70 6.15 39. 65 84.19
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home location on the first day of the study, and the corresponding
latitude and longitude. Table 2.4 and 2.5 show the monitoring sites
used in our analysis for each pollutant, and their |atitude and

| ongi t ude.

These daily sumaries for each individual provided the exposure
data for the analysis of the individual daily time series of episodes of
sickness (see Sec. V) and provided the basis for |onger-term summaries.
For each pollutant, we calculated each individual's nonthly, yearly, and
study-1ong average and maxi mum exposure to each pollutant. W also
cal cul ated the average of the daily maxi nuns.

For the aggregate time series, we used a different approach to
estimating air pollution exposure. For that analysis, we used only one
observation for each day. In both Dayton and Seattle, we used the
readi ngs from downtown nonitoring sites as our estimate of air pollution
exposure. Cearly, this approach misestimtes the exposure of
i ndi viduals who live some distance fromthe central area. To use better
i ndi vidual estimates requires either doing a cross-sectional analysis or
turning to the individual tine series analysis.

Tables 2.6 and 2.7 provide sumary statistics on the daily
pollution levels for calendar year 1976 used in the aggregated tine
series. Because the values are from centrally located nonitoring
locations, the pollution Ievels present a worst-case summary for the
daily levels. Tables 2.8 and 2.9 provide a summary of the annual |eve
of exposure for the pollutants used in the annual analysis of Sec. III.
The unit of observation is a person for one year. Hence, each area of
the two cities is weighted by the number of people who live and work
there, fully adjusted for changes in residence and enployment. Tables
2.10 and 2.11 provide a sunmary of the cunul ative exposure for each
pol lutant over the course of the study for the pollutants used in the
before-and-after analysis of health status in Sec. VI. The unit of
observation is a person. Hence each area of the two cities is weighted
implicitly by the anount of time that people live and work there.
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Table 2.4

DAYTON MEASURI NG STATI ONS AND NMAP COCRDI NATES

Station Latitude Longitude CO COH N2 QZONE S22 TSP
0800001G01 39.83 84.42 X
1100001@01 39.63 84. 17 X
1260001301 40. 00 83. 80 X X
1660002101 39. 77 84.21 X
1660003601 39.76 84.19 X
1660014601 39.76 84.19 X
1660015Q01 39.77 84.18 X
1660017001 39.75 84.24 X
1660019101 39.81 84.19 X X X X X
1660021601 39.75 84.13 X
1660022101 39.70 84.31 X
1660025Q01 39.76 84. 20 X X X X
1660026Q01 39.75 84.19 X
1940001Q01 39.74 84.63 X
2040001G01 39.79 84.03 X
2040003G01 39.83 84.00 X
2440002601 39.63 84.37 X
2640001G01 40. 10 84.63 X
264000201 40. 10 84.61 X
2985001G01 39. 87 84.14 X
3240002601 39.70 84.14 X
3240003601 39.73 84.19 X
4280002301 39.65 84.28 X X
4500001301 39.79 84.13 X X
4500002301 39.80 84.35 X
4500003301 39.85 84.33 X
450000401 39.79 84. 13 X X
4500005G05 39. 64 84.22 X
4550001301 39.71 84.21 X
4760001301 39.94 84.02 X
4790001301 39.74 84.39 X
5100001G01 39.72 84.18 X
552000201 40. 14 84.23 X X X
5520003301 40. 14 84.24 X
5520004G01 40. 14 84.21 X
564000101 39. 84 84.72 X
6380001G01 39.93 83.81 X
6380002601 39.95 83.76 X
6380003Q01 39.91 83.77 X
6380004G01 39.92 83.81 X X X
6580001G01 39.96 84. 17 X
6660001G01 39.80 84. 30 X
6680001G01 40. 04 84.20 X
6880001301 39.90 84.21 X
6880003101 39. 89 84. 20 X
7300001301 39.96 84.33 X
7670001G01 39.81 84.03 X
7720001301 39.70 83.93 X
7720002301 39.71 83.93 X
7740001301 39. 80 83. 89 X
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Table 2.5

Station Latitude Longitude COH NO2 OZONE S TSP
0100003101 47.31 122.23 X
0120002101 47.61 122. 20 X
0120004F01 47.61 122. 20 X
0180001F01 47.57 122. 62 X
0180002101 47.58 122.61 X X
0640003101 47.98 122.21 X X X
0960001101 47. 40 122.23 X X X X
0960002101 47. 39 122.23 X
0980001103 47.70 121.79 X
0980010F01 47.55 122.04 X
0980013101 47.33 122.31 X X
0980014102 47.35 122. 46 X
1560002F01 47.16 122.51 X X X
1760002101 47. 48 122. 20 X
1760003101 47.48 122.21 X
1840001101 47. 60 122.33 X
1840301P01 47. 60 122.33 X
1840007101 47. 66 122. 39 X
1840009101 47. 62 122.35 X X
1840057102 47.56 122. 27 X X X
1840058101 47. 45 122.28 X X
1840059F01 47. 54 122.33 X X X
1840066102 47.57 122.35 X
1840068101 47.52 122.32 X
1840072F01 47.56 122.31 X
1840073101 47.70 122.34 X X
1840074F01 47. 60 122.33 X
1840079F01 47.60 122.33 X
1840080F01 47.57 122.31 X
2100001101 47. 40 122.22 X X
2140001101 47.25 122. 44 X
2140001P01 47.25 122.43 X
2140003101 47.27 122.51 X X X
2140004102 47.26 122. 41 X X
2140005101 47. 30 122. 42 X X X
2140006101 47. 24 122. 40 X
2140013101 47.28 122.52 X
2140015101 47.23 122.43 X X
2140017F01 47.20 122. 49 X X
2195001101 47. 46 122.25 X
ST1776K64B 47.51 122. 30 X X
ST2718P46B 47.09 122. 62 X
ST2718P47B 47.11 122. 64 X
ST3100S05B 48. 08 122.19 X X
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Table 2.6

1976 DAILY AIR POLLUTION LEVELS
SEATTLE AGCGREGATED TIME SERIES

Pol | ut ant
Aver age, Aver age Maxi mum
Measur e SO2 COH Ozone
Mean 0. 00977 0.788 0. 0284
Std. Dev. 0. 00964 0.518 0.0132
Quantiles
100 0. 0642 2.492 0.07
99 0. 0454 2. 368 0. 07
95 0. 0260 1.817 0.05
75 0.0150 1.082 0.04
50 0.0071 0. 602 0.03
25 0. 0021 0.388 0.02
5 0.0004 0.226 0.01
1 0 0. 156 0.01
0 0 0. 105 0
n 251 362 257
NOTE:  Sanple sizes vary due to inconplete

pol | utant data.

Table 2.7

1976 DAILY AIR POLLUTION LEVELS:
DAYTON AGGREGATED TI ME SERI ES

Pol | ut ant

Aver age Aver age Average Maxi mum Aver age

Measur e SO2 CCOH TSP Qzone NO,
Mean 0. 0152 0.273 106. 44 0.0718  0.0244
Std. Dev. 0.0127 0.159 40. 21 0.0396  0.0113
Quantiles

100 0.0893 1. 026 277.0 0.190 0.0648
99 0.0625 1.018 232.6 0.173 0. 0592
95 0.0368 0.610 180 0. 150 0.0438
75 0.0212 0. 350 128 0. 095 0.0315
50 0.0112 0.234 99 0. 065 0.0226
25 0.0061 0. 160 79 0. 040 0.0158

5 0. 0021 0.101 52 0.020 0.0083
1 0 0. 087 33 0.010 0. 0054
0 0 0. 087 17 0. 005 0. 0035
n 310 102 366 361 332
NOTE:  Sanple sizes vary due to inconplete pollutant

dat a.
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Table 2.8

ANNUAL Al R PCLLUTI ON SUMVARY:  SEATTLE

Pol | ut ant
Aver age Aver age Aver age Maxi num
Measur e SO2 COH TSP QOzone
Mean 0.0101 0.603 60. 83 0.1203
Std. Dev. 0. 0025 0.117 15. 02 0. 0340
Quantiles
100 0.0143 0. 889 123.81 0.17
99 0.0143 0. 880 112.76 0.17
95 0.0135 0. 863 92.58 0.17
75 0.0122 0.662 66. 62 0.16
50 0.0102 0.608 57. 89 0.12
25 0.0089 0.532 51.18 0.10
5 0. 0052 0. 435 41. 84 0. 07
1 0. 0047 0. 320 40. 13 0.06
0 0. 0041 0. 280 25. 46 0.05
UnitsS
n 9707 7609 9707 9707

NOTE: Sanple size for COH is |ower due to inconplete COH
data in some years

Table 2.9.

ANNUAL Al R POLLUTI ON SUMVARY:  DAYTON

Pol | ut ant

Average Average Average Maxi mum

Measur e S0, COH TSP Qzone
Mean 0. 0105 0.189 70. 17 0. 155
Std. Dev. 0.0039 0. 053 13.01 0.033
Quantile

100 0. 0265 0. 313 120. 26 0. 200
99 0.0160 0. 284 106. 81 0.200
95 0.0154 0.275 97. 14 0. 200
75 0.0145 0. 249 76.71 0.190
50 0.0112 0.170 67. 28 0. 145
25 0.0073 0. 146 60. 66 0. 127

5 0.0049 0.130 53. 65 0.115
1 0. 0048 0. 127 47. 32 0. 089
0 0. 0005 0. 097 32. 27 0.170
N 3989 2156 3992 3992

NOTE:  Sanple sizes vary due to inconplete
CH data for some years
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Table 2.10
AVERAGE EXPOCSURE OVER THE STUDY:  SEATTLE
(n = 2386)
Pol | ut ant
Aver age
Average  Average Maxi mum Aver age
Measur e So2 TSP Dai |y Ozone COH
Mean 0.0101 61. 02 0. 0294 0. 642
Std. Dev. 0.0018 10. 98 0.0013 0.088
Quantiles
100 0.0123 108. 22 0.0328 1.038
99 0.0122 100. 17 0.0321 0.821
95 0.0119 83.42 0. 0313 0.821
75 0. 0115 67.10 0. 0301 0.683
50 0.0111 59. 45 0. 0296 0. 637
25 0. 0084 53.37 0. 0286 0.581
5 0. 0067 46. 92 0.0272 0. 505
1 0. 0065 43. 85 0. 0261 0. 456
0 0.0061 42. 05 0. 0254 0.448
Table 2.11
AVERAGE EXPOCSURE OVER THE STUDY:  DAYTON
(n = 956)
Pol | ut ant
Aver age
Average  Average. Maxi mum Aver age
Measur e SO, TSP Daily Ozone COH
Mean 0.0113 70. 47 0. 0524 2.341
Std. Dev. 0.0021 11. 04 0. 0062 0.273
Quantiles
100 0.0141 102. 49 0. 0695 2.723
99 0.0141 98. 42 0. 0659 2.722
95 0.0141 92. 97 0.0637 2.711
75 0.0139 76. 10 0. 0585 2. 617
50 0.0110 68. 31 0. 0501 2.431
25 0. 0095 61. 28 0. 0479 2.025
5 0. 0080 57.23 0. 0447 1.949
| 0.0079 33.59 0. 0437 1.931
0 0.0079 51. 86 0.0431 1.855
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Unit of Analysis

The unit of analysis is a person-year for the annual analysis, a
day for the aggregated and individual time services analysis, and a
person for the cunulative health status analysis. See the follow ng
sections for further details.

Dependent Variables

In this report, we focus on three sets of health outcones: use of
heal th services, tine lost due to illness, and health status. Here we
provide a brief overview of the outcomes. The follow ng sections
provi de greater detail

Use of Health Services. W have confined our analysis largely to
medi cal services delivered in an anbul atory setting, excluding
out patient psychotherapy and dental services.” In Dayton, we use actual
expenditures as a neasure of the use of nedical services. In Seattle
we use inputed expenditures so that we may include the GHC participants
in the analysis. Excluding that group would degrade our precision
substantially.  For GHC participants, expenditures include both in- and
out-of-plan use. Caims filled by participants provide data on the
amount and type of fee-for-service use. Abstracted nedical records
provide data on anount and type of use at GHC (see Gol dberg, 1983). W
use expenditures where possible rather than visits because expenditures
reflect the intensity of the service provided as well as the frequency
of use. In the aggregated time series analysis, we use the probability
of any use on that day.

Because GHC does not bill its patients for services rendered, there
is no readily available, preexisting measure of the aggregate val ue of
procedures provided. Instead, we have inputed a value to procedures
provided by GHC based on the California Relative Value Study codes. To
preserve conparability, the same inputation has been nade for procedures
provided in the Seattle fee-for-service sector. See Manning et al
(1984) for further details.

In Seattle we also exclude drugs and supplies, because we have not
devel oped an inputation algorithm for drugs and supplies obtained at
GHC.
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Time Lost to lllness. W exam ne the association of air pollution
(daily or annual) and the ampunt of time that an individual is ill. The
H E provides data on days lost from work, school, or usual activities
fromthe health diary system For children, we know when a child was
ill or took time off from school or nerely restricted his or her
activities. For adults, we know when a person mssed work or restricted

activities because of illness. W know the dates involved if a person
(e.g., a nother) nissed work or school in order to visit a doctor or to
care for another famly nenber. In the case of workers, we have data on
sick-leave provisions and know if the time off was used for a particular
sick-loss day. The HE data on tinme lost to illness do not contain any

informati on on synptons or diagnoses. Therefore, it is inpossible to
separate sick-1oss days related to air pollution fromthose which are
not .

Health Status. W also exanine the association between air
pol lution and changes in health status between the beginning and end of
the study. The H E collected data on subjective assessments of health
as well as obtaining objective measures of Ilung function, cholesterol
and ot her physiol ogical conditions.

W use the general health index (GH) described earlier as a single
uni fying measure of health status. Data for this subjective assessnent
were collected at entry into the study, and annually thereafter.
Because data were collected for everyone, we can exanmine effects in a
general popul ation

In addition to a general measure, the HE collected data on the
presence and severity of the more common chronic health diseases and
problems. In this study, we use seven neasures related to
car di opul monary probl ens:

(1) The shortness-of-breath scale is a five-point scale ranging
fromno shortness of breath to severe shortness of breath. The
scale is based on responses to four questions on a self-
adm ni stered questionnaire (Rosenthal et al., 1981).

(2) Chronic bronchitis is based on self-reported information
regardi ng phl egm production, prior diagnosis, and treatment by
a physician (Foxman, Lohr, Brook, et al., 1982).
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(3) Hay fever is a three-point scale, with separate categories for
never had hay fever, had hay fever in the past but not the |ast
12 nonths, and had hay fever in the last 12 nonths (Beck et
al., 1981, 1983).

(4) An eight-point scale for asthnma for children (aged 5-13) with a
value of 0 for those who did not have asthma in the |ast 12
nonths, and values 1-7 that are based on the duration of the
condition in the past 12 nonths (Beck et al., 1981, 1983).

(5) A seven-point scale for chest pain, with categories
corresponding to the frequency of chest pain from no-chest pain
to chest pain al nost every day (Rosenthal et al., 1981).

(6) Exercise Pain is a three-point scale with categories for never
have chest pain, have pain when wal king fast or uphill, and
have pain when wal king nornmally on level ground (Rosenthal et
al., 1981). This measure differs fromthe prior one, in that
it covers chest pain while exercising. Used only in Dayton
because measure (5) was not available for that site.

(7) For individuals over 20, the H E provides data on lung function
from spironetry tests. W use a measure of forced expiratory
vol une in one second (FEVl) as a percentage of FEV1 predi ct ed
using age, sex, and height regressions. The coefficients for
these prediction equations are from Knudson et al. (1976).

This neasure is available for a random 60 percent of the sanple
at enrollnent and all of the sanples at exit fromthe HE

These measures are fully docunented in a series of Rand Reports
under the governing title Conceptualization and Measurenent of
Physi ol ogic Health for Adults, in the volumes for congestive heart
failure, chronic obstructive airway disease, hay fever, and angina
pectoris. For children aged less than four, see Measurement of
Physi ol ogic Health for Children
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[11.  INDIVIDUAL ANNUAL APPROACH: METHODS AND RESULTS

METHODS

Qur first set of results is based on conparisons of the annual use
of outpatient nedical services and time lost to illness with an
estimated annual exposure to air pollution for each individual. For

this analysis, we thus have one observation per person per year, with a
maxi mum of five years of data, i.e., five observations per person. As
noted in Sec. Il estinmates of each individual's exposure to air
pol | utants have been made by napping residence and work locations to the
nearest nonitoring stations. These estimates are corrected for change
of job and residence.

We use two estimation techniques. First, for expenditures on
medi cal services, we use a two-part nodel. One part is a probit
regression nmodel for the probability that a person will use outpatient
medi cal services during the course of the year. The other is a weighted
| east-squares equation for the logarithm of expenditures for those
persons who did use outpatient medical services. (See App. B for
further details.) The only difference between the Dayton and the
Seattle anal yses of expenditures is that we include the costs of drugs
and supplies in the Dayton nunbers. Qher analyses have shown that the
demand for these products derives largely from outpatient visits.

For time lost to illness, we use a negative-binomal regression
model for the nunber of days with any school or work loss or restricted
activity during the year; this nodel is simlar to the one used in
Hausman. Wse, and Ostro, 1983 (see App. B). data are based on biweekly
reports of tine lost due to illness. W use the negative binomn al
rather than a Poisson nodel because the data exhibit overdi spersion.

The estimation techniques used here operate on the sane assunption
used in cross-sectional analyses. That assunption is that the
unobserved determinants of the use of anbulatory medical services and of
time lost to illness are uncorrelated with the explanatory variabl es
That is a reasonable assunption to make for the insurance variables,
because the insurance coverage was randomy assigned to each fanily
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Thus, each insurance plan has the sane mx of sickly and healthy
individuals. However, for this analysis, it is nore inportant that the
assunption hold for the air pollution variables, and, unfortunately, it
is less likely that it does. Levels of air pollution were not randonly
assigned. Fanmilies with menmbers who are susceptible to the adverse
effects of air pollution may choose to live in less polluted areas. To
the extent that the H E neasures of health status neasure the true
health status with error, the measurenent error in health status may be
correlated with air pollution exposure, and the estimtes may be biased.
Put another way, the analytical techniques do not use the repeated
observations on each person to purge the estinmates of any tendency for
more sickly individuals [net of the HE health status neasures) to live
in less polluted areas.'

RESULTS
Use of Medical Services

Table 3.1 presents the estimated coefficients for the two-part
model for annual ambul atory expense in Seattle and Dayton.' The data
come fromclains filed at the tinme of service use. Al pollutants
were entered into the nodel together, so the coefficient for each
pol lutant represents the partial effect of that pollutant alone and
excludes the effects of any correlated pollutants.

None of the effects on anbul atory expenses are significant, except
for those of ozone and COH on expenditures per user in Seattle. The
ozone effect, however, is in the unexpected direction: Higher |evels
are associated with |ower expenditures on health. As a matter of fact,
all effects of increased ozone and TSP appear beneficial. The effects
of SO2 vary. On the whole. the effects on expenditures appear to be
more significantly counterintuitive than those on probability of use.
Also, air pollution appears to be associated with beneficial results

'we do adjust for intrafamly correlation and intertenporal
correlations using a randomeffects specification. However, this
assumes that the errors are uncorrelated with the explanatory variables.
If there is adverse selection into cleaner areas of each city, that
assunption does not hold for air pollution.

2c0 is excluded from Seattle, COH from Dayton, and NO from both

because of nissing data and confounding with other variables.
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Table 3.1

EFFECTS OF AIR POLLUTI ON ON USE OF AMBULATORY MEDI CAL SERVI CES
(T-STATISTICS | N PARENTHESES)

Seattle Dayt on
. (Log) . (Log)
Probability Expenditures Probability Expendi t ures
Pol | ut ant of Any Use per User of Any Use per User
SO +.2008 -2.6246 +0. 0908 -0. 0503
(+1.35) (-0.51) (+0. 82) (-0.67)
Cco Tt T -0. 0240 +0. 008
(-0.115) (0.07)
TSP -0.0014 -0. 0011 -0. 209 -0. 189
(-0.55) (-0.51) (-0.92) (-1.16)
Qzone -0.1213 -5. 8020 -0. 127 -1.161
(-1.63) (-2.71) (-0.75) (-1.29)
Coef ficient
of haze +0. 2036 +0. 1828
(+0.77) (+1.78)

more consistently in Dayton than in Seattle. But again, alnost all of
these "effects" are not significantly different fromzero. |f we
combi ne the results fromthe two parts of the nodel, we find no
significant effect of air quality on the use of anbulatory nedica
services in either city.

Because susceptibles may respond differently to air pollution than
the rest of the population, we examined themin a separate analysis. W
defined an individual as susceptible if he suffered from hay fever,
asthma, or shortness of breath. Use of outpatient services in Dayton
increased in response to greater levels of air pollution, not to an
extent that could be considered significant (x2(8) = 12.14), but to a
much hi gher degree than one woul d expect at random (p = .5). In large
part, this result is due to a greater likelihood of use of services by
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susceptibles as CO and TSP levels increase (t = 1.55 and 1.98

respectively). In Seattle, we had a | arger sanple of susceptibles. The
anal ysis there showed mxed results, but there were significant
increases in total expenses with falling ozone (t = -2.44) and TSP (t =
-1.69).

Time Lost to lliness

Table 3.2 gives elasticities of air pollution with respect to tine
lost to illness for Seattle and Dayton.?® The number of days lost to
illness was not significantly related to annual air pollution for nost
pol lutants in both cities. The exceptions were TSP in Seattle and ozone
in Dayton, both of which are associated with decreasing time |osses to

illness. In fact, almst all the insignificant effects were also in the
"wong" direction.

Table 3.2

ELASTICI TIES OF AR PCLLUTI ON W TH RESPECT
TO TIME LCST TO I LLNESS

Seattle Dayt on
Pol lutant Coefficient (t-Statistic) Coefficient (t-Statistic)
TSP -0. 643 -2.16 -0.352 -0.81
S -0. 024 -0.73 +0. 034 +0. 19
Ozone -0.034 -0.95 -0.598 -1.93
CO2 " T -0. 262 -0.63
COH -0.510 -1.50

*The el asticities indicate the proportional change in tine lost for
a doubling of air pollution. For exanple, a 100 percent increase in
ozone in Seattle would result in a 3.4 percent decrease in time lost to
illness.



DISCUSSION

We find that the use of anbulatory nedical services and time |ost
to illness generally do not increase fromyear to year or from place to
place as air pollution levels increase. In fact, we observe that ozone

is significantly, counter intuitively associated with expenditures for
nmedi cal services in Seattle and with time lost to illness in Dayton. It
is thus possible that, at levels encountered in those cities, increases
in ozone are associated with beneficial effects on health. For exanple,
years with high ozone may be warmer, sunnier years with |ess sickness.
The ozone variable nmay be picking up these omtted weather variables.
The inclusion of a dummy variable for year should reduce this bias.

There are several possible explanations for the general |ack of
significant findings:

¢ The absence of a true effect.

e The sorting out of individuals across pollution zones.
* The use of annual rather than daily data.

e Ortted weather variation from year to year

The second and third of these nmight be ruled out by changing the
anal ytical approach.

Geographical Sorting

Al'though we have used data from a randomi zed trial, this study of
air pollution is observational, because we have not randonized
individuals to differing levels of air pollution. |f people with
respiratory problems are more likely than healthy people to live in
areas with better air quality, then the estinates of the adverse effects
of air pollution could be biased downward to the point that the
coefficients have the wong sign.

To investigate further the potential for geographical sorting. we
reestimated the effect of air pollution with a fixed-effects nodel for
use of anbulatory nedical services and for time lost to illness; there
is a fixed effect for each individual. 1In each case, we regressed the
annual anbul atory expenses, stated as a deviation from each person's
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mean, on the levels of the four pollutants, each stated as a deviation
fromeach person's nean. By taking each person's independent and
dependent variables as deviations from his own nmean, we allow each
person to act as his own control; see Maddala (1971). In effect, we
changed the individual annual analysis from a cross-sectional to a pane
study. The results for expenditures in both cities and for time lost to
illness in Seattle were estimted by ordinary |east squares.®* W did
not attenpt to estinmate the parameters of a fixed-effect version of the
two-part rmodel .

Applying the fixed-effects model in Seattle reduced the beneficia
effect of ozone on total anbulatory expenditures to insignificance (t =
-0.75) and changed the beneficial effects of the other pollutants to
adverse effects, though still insignificant ones; the overall test
statistic was F(4, 6041) = 0.47. Applying the fixed-effects nodel to
expenditures in Dayton yielded insignificant and perverse effects for
TSP and SO2 (overall F(4, 3920) = 4.96).

Using Annual Data

The lack of significant results nmay be attributable to the
i nappropriate aggregation of an individual's responses over tine. Colds
and other sicknesses may occur in the winter, while air pollution is
hi ghest in the sunmer or spring. Using air pollution values based on
regional variation in spring air quality to explain behavior driven by
Wi nter-versus-spring differences is inappropriate. For instance, in
Dayton, the period of highest ozone levels occurred in July 1976, but
most of the use of health services in that year, especially for
respiratory problenms, occurred during the late fall through early
spring. Thus, the highest ozone reading could not have caused the
greater part of the use of services for that year. |In addition, the use
of annual averages for air pollution and annual expenditures largely
ignores the inportance of short-term fluctuations in air quality and
illness. Annual values are less variable than monthly or daily val ues.

The less variable the independent measure, the less precision for its
coefficient.

“Wwe did not correct the standard errors for the negative
correl ations anobng observations induced by taking observations as
deviations from individual nmeans.
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W have used two other approaches to estimate the adverse effects
of air pollution on use of medical services and time lost to illness
Both take fuller advantage of the information in the tine series of
daily (rather than annual) values and the second controls for
geographi cal sorting. The next two sections describe these approaches
their limtations and their results.
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IV. AGGREGATED DAY-TO-DAY APPROACH

To take full advantage of the available day-by-day information on
variations in health outcones and air pollution we have used two
related nethods. The first of these aggregates the responses across
individuals so that we have one observation for each day. This method
is not affected by individuals' sorting thenselves out geographically on
the basis of their susceptibility to pollution. W do not conpare the
responses of geographically separate individuals with each other,
because we look at a fixed population. The second nmethod exam nes each
individual' s daily tine series separately, using the Wittenore-Korn
technique; the latter approach is described in the next section

DATA AND METHODS

The sanple for the analysis of time lost to illness consists of al
i ndi vidual s who were assigned to file health diaries with HE Al though
the diaries ran into the third year in Seattle and the fourth year in
Dayton, we elimnated the partial data from those years to ensure against
seasonal inbalance in the analysis. Also, the health diary data for the
first year in Dayton were not available fromthe HLE.  Thus, we used the
data from HE years 2 and 3 in Dayton and 1 and 2 in Seattle. These two
pairs of years happened to match each other very closely on the cal endar.

To allow conparability with the tine-lost results, the sanple for
anal yzing the use of nmedical services consists of all HE participants
present in Seattle for years 1 and 2 and in Dayton for years 3 and 3

For each day, we tallied the nunber of individuals in this'
subsanpl e and the nunber reporting any physician visits, days in a
hospital, sick loss, work loss or restricted activity. W used a
maxi mum | i kel i hood |ogistic regression nodel to estimate the association
of each day's air quality level with the proportion of the popul ation
reporting each health outcome (any visit. any hospitalization, any sick
loss, or any work |oss)'

!Because of the staggered enrollnent dates in the experinent, the

popul ation at risk varied by nmonth. The results are weighted to reflect
the differences in sample size.
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The anal yses we report here are those with lag tines between
pollutant level and health effect that were found to capture nost of the
effect without losing information because of gaps in the pollution time
series. For pollutants other than ozone, each day's health outcomes are
estimated as a function of the logarithms of that day's and the
preceding two days' average pollutant concentrations. Estimtion of
ozone is the same except that daily maximuns are used instead of daily
aver ages.

The independent variables include air quality variables, along with
indi cator variables for day of the week and nonth of the year. W
included the daily and nonthly variables to avoid confounding true air
pol lution effects with true daily and seasonal effects. Air quality
varies markedly by day of the week and season of the year often in the
same direction as daily and seasonal health effects. For exanple, air
pollution levels are |ower on weekends, and so are use of services and
time lost to illness. Part of the lower use of services is due to
reduced availability of physician services (except for energency
departments) on weekends. Part of the lower time lost to illness is due
to the fact that schools are closed and few people work weekends. As a
result of including nonthly and daily dunmes, our estimation procedure
controls for variation between days of the week and nmonths of the year
in estimating the effects of air quality.

Qur data include neasures of air pollution levels taken at a single
point in each city.? In both cities, we analyze for SO, and ozone. TSF
was included in the Dayton analysis but not in Seattle. where TSP was
measured every sixth day; including TSP in Seattle would have reduced
substantially the nunber of observations. In Seattle, COH was used as a
prosy for TSP. NO, and CO were also included only in the Dayton
anal ysi s. Because—of gaps in the daily data for individual pollutants
and lack of overlap anong the pollutant time series, we focus on each

2 Because we have only one data point for each day. we could use
only one value of air pollution level for each pollutant. W used
values froma centrally located. usually downtown nonitor. See the
"Exposure" discussion in Sec. |
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pollutant taken one at a time. Using the intersection of the six tine
series would have dramatically reduced our precision. Hence, the effect
reported here is the marginal rather than the partial effect, because we
have not controlled for other pollutants.

RESULTS
Use of Ambulatory Services

As shown in Table 4.1, only ozone has significant effects on use of
ambul atory health services in Seattle (when the other two pollutants are
included in the nodel). The signs for 502 and Ozone are as expected--
increases in air pollution are associated with higher probability of
visiting a physician. However, the nagnitudes of these adverse effects
of air pollution are small. For _802, a 100-percent degradation in air
quality is associated with a 0.5-percent increase in the proportion of
the population visiting a doctor. For ozone, there would be a
4.3-percent increase. A 100-percent increase in COH is associated with
a 0.9-percent decrease in visits.

In Dayton, the aggregated day-to-day analysis shows a significant
association at the 10 percent |level or better between the Ilikelihood of
visiting a nedical provider and the |evel of NO, and 802. and at better

Table 4.1

RESPONSE TO AIR QUALITY:  EFFECTS OF A 100- PERCENT | NCREASE IN
AR POLLUTION ON DAILY PROBABILITY OF A VISIT IN SEATTLE

2
X“(3) for
% Before % After Percentage Air Pollution
Pol I ut ant 100% Change 100% Change Change [ a] Paraneters

CH 1. 486 1.473 -0.9 38. 11 b]
SO 1. 475 1. 482 +0.5 4.00
Ozone 1.481 1.544 +4.3 7.74] c]

NOTE :  Percentage in first colum differs by pollutant
because of different gaps in tine series.

[a] 100% x [(col 2 - col 1)/col 1].

[b] Results significant at 1 percent Ilevel.

[c] Results significant at 10 percent I|evel.
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than the 1-percent level for ozone, and TSP (see Table 4.2). However,
in contrast to Seattle, the signs are not as expected for these

pol lutants: Increases in these pollutants are associated with a |ower
rather than a higher probability of a visit. Only CO exhibits an
adverse effect of increased air pollution. As in Seattle, the

magni tudes of all effects of air pollution are quite small, with a
100- percent degradation in air quality leading to less than a four-
percent change in the number of individuals seeking nedical care.

Hospital Days

The effects of air pollutant concentrations on the likelihood of
being in the hospital was generally insignificant in both cities. This
lack of significance is largely attributable to the rareness of
hospi talizati on. The one exception to this pattern was TSP in Dayton
(X2(3) =21.28). In this case, a 100-percent degradation in air quality
was associated with a 33-percent increase in use of services. The

Table 4.2

RESPONSE TO AIR QUALITY:  EFFECTS OF A 100- percent | NCREASE
ON AIR POLLUTI ON ON DAILY PROBABILITY OF A VISIT IN DAYTON

Proportion Visiting Physician

2
X" (3) for
% Before % Af t er % Air Pollution
Pol | ut ant 100% Change 100% Change  Change [4] Paraneters
NO2 1.251 1.223 -2.2 7.57[ b]
502 1.203 1.179 -2.0 7.20[ b]
co 1. 255 1.289 +2.7 28.19[ c]
TSP 1.236 1.189 -3.6 23.06[ c]
Ozone 1.239 1.194 -3.8 12.96[ c]

NOTE:  Percentage in first colum differs by pollutant because
of different gaps in tine series.

[a] 100% x [(col 2 - col I|)/col 11.

[b] Results significant at 10 percent |evel.

[c] Results significant at 1 percent |evel.
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magni tude of this effect is inplausibly large. In Dayton, nost of the
ot her pollutants--SOz, CO, and ozone--did have effects in the expected
direction, i.e., more pollution was associated with higher use. In
Seattle, however, SO2 and ozone exhibited beneficial but statistically
i nsignificant effects.

Time Lost Due to lliness

Tables 4.3 and 4.4 show the effects on tine lost to illness
associated with each of the pollutants in Seattle and Dayton. In
Seattle, lower levels of SO2 and ozone were significantly associated
with higher levels of time lost to illness, but the magnitude of the
estimated effect was small. COH was not associated wth significant
changes in tine lost due to illness. A doubling of the level of ozone
woul d be associated with a fall in this proportion by about 10 percent.
This association of air quality and time lost to illness is largely the
result of sick-loss tine, because the results for work loss are even
| ess significant than one woul d expect from random variation.

A larger effect was found in Dayton, where a 100-percent increase
in ozone concentration was associated with a 13-percent increase in tinme
lost to illness (x2(3) = 26.15). The effects of NO2 and SO2 in Dayton

Table 4.3

EFFECTS OF A 100- PERCENT | NCREASE IN AR POLLUTION ON
DAILY PROBABILITY OF ANY TIME LOST TO I LLNESS I N SEATTLE

x2(3) for
% Before % After Percentage Air Pollution
Pol [ utant 100% Change 100% Change Change [a] Paramet ers

gBH 2.826 2.782 1.6 2.25
2 2. 668 2.589 3.0 15. 09[ b]
Qzone 2.679 2.412 -10.0 12.97[ c]

[a] Includes sick and work | oss.
[b] 100% x [(col 2 - col 1)/col 1].
[c] Significant at 1 percent |evel.
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Table 4.4

EFFECTS OF 100- PERCENT | NCREASE IN AIR PCLLUTI ON ON
DAI LY PROBABILITY OF ANY TIME LOST TO ILLNESS IN DAYTON

Percentage Il [a]
X2(3)
for Ar
% Bef ore % After % Pol | ution

Pol | ut ant 100% Change 100% Change Change|[b] Par anet ers

NO2 3. 042 2.902 -4.6 12.80[ ]
SG2 2.294 2.805 -4.1 15.98[ c]
(60) 3.095 3.031 -2.1 1.56
TSP 3.070 3.033 -1.2 1.21
Ozone 3.038 3.423 +12.7 26. 15[ c]

[a] Includes sick and work | oss.
[b] 100%x [(col 2 - col |)/col 11.
[c] Significant at 1 percent |evel.

were al so significant but of the wong sign. Both CO and TSP had
insignificant effects.

DISCUSSION

The aggregated day-to-day approach displays a mxed set of
associ ations between air quality and our health outconmes. |In Seattle,
increases in ozone concentration were associated with a higher
probability of using ambulatory medical services but |ower probability
of being sick. SO2 was negatively associated with seeing a physician,
but positively associated with time lost to illness. In Dayton, higher
CO has a significant adverse effect on the Iikelihood of visiting a
medi cal provider, while higher TSP has an adverse effect on being
hospitalized. H gher levels of ozone were associated with higher levels
of time lost due to illness.
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However, the results are only partially in agreement with our
expectations. W also found that higher levels of NOZ’ 502, TSP, and
ozone were significantly associated with lower likelihood of visiting a

provider.  Higher |evels of No2 and 802 were associated wth | ower
levels of tinme lost to illness.
A priori, we expected that tine lost to illness would be nore

responsive to air quality than use of services, for four reasons:

(1) One can suffer ill effects and report them as restricted-
activity days without incurring the opportunity costs of not
attending school or going to work, and without paying the price
of a visit to see a physician

(2) It may take some tine to see a physician because of delays to
appoi ntment for nonenergency care. During that period, the
adverse effects of air pollution may disappear.

(3) Individuals suffering from cardiopul monary problens may be able
to treat themselves for mnor adverse effects when sick,
relying on a physician for treatnent of only the nore serious
epi sodes.

(4) Both cities have only noderate levels of air pollution. As a
result, we mght expect few episodes of illness that are severe
enough to be presented to a physician.

Here, we have disaggregated the data to a behaviorally nore
meani ngful time frame. Wiy do we still obtain this mixed set of
results? Again, either there is no effect large enough to be detected
with these data, given the pollution levels in Seattle and Dayton, or
the results are biased by our nethods. For exanple, the om ssion of
met eor ol ogi cal variables could have led to an onitted variables bias;
during Phase Il of this project, we will add such variables to the |ist
of explanatory vari abl es.

Also with this nethod, we aggregated across individuals to avoid
the potential bias that would occur if sicker individuals noved to
cleaner areas; in principle, the population acts as its own control. To
do that required using a single source of air quality data, which came
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from a downtown nonitor. Thus, the air quality data neasure pollution
with error for nuch of the sanple, especially those living in cleaner
areas. This neasurenent error could bias the estimted coefficients
toward zero.

In the next section, we use a technique devel oped by Wittenore and
Korn to avoid the statistical problems in both the individual annual and
in the aggregated day-to-day approaches.
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V. INDIVIDUAL DAY-TO-DAY APPROACH: METHODS AND RESULTS

In this section we discuss the individual day-to-day analysis based
on the approach proposed in Wittemore and Korn (1980). This approach
is carried out in tw stages. First, we estimate each individual's
daily health outconme as a function of his or her daily aerometric
exposures so as to assess the individual-specific response. Each
i ndi vidual serves as his or her own control in this analysis. Then, we
pool the individual-specific responses and carry out a secondary
analysis, the neta-analysis, in which we assess the overall response to
aeronetric attributes in the population. This second stage allows us to
answer three key questions: First, do the people in the population on
the average fall ill nmore often on polluted days than on clean days?
Second, do individuals in the population respond the same or differently
to air pollution? Third, if they respond differently, are their
responses related to their known characteristics? (For exanple, are
children nore sensitive to air pollution than adults?)

We begin by describing the Wittemre-Korn nodel and its
application to the HE data. W then show how we derived the sample we
analyzed. Finally, we present the results of the second-stage anal ysis
for the full sample and for sickly and healthy subsamples. Appendix C
presents further results of the first-stage analysis, along with
conparisons of other subsanples.

THE WHITTEMORE-KORN MODEL
Synopsis

In the Wittenmore-Korn nodel, the unit of analysis is usually taken
as a person-day. (It is possible to consider other time units such as
hours or weeks, but the twenty-four-hour period is usually the nost
convenient to work with. The HE data are collected in daily units.)
For each individual in the target population, say, the ith person, and
for each day in the study period, say, the tth day, the nodel specifies

a logistic regression nodel for the daily probability of the person's
bei ng sick:
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logit(p, ) = B, + Zj Xise® By (1)

where p;, is the ;th person's probability to be sick on the (th day:

Xijt is the level of the jth expl anatory variable (e.g., aeronetric

th th

value) for the i individual on the t " day:; Bij is the i*8 person’ s

response to the j th expl anatory variable; the intercept for the ith
person, B.,» is the logit of the probability of the th person's being
sick on a day when the levels of all explanatory variables are zero.

W use a randomeffects (variance conponents) nodel to specify a
distribution of individual responses, Bij' The nodel specifies a neta-

distribution for the individual responses as follows:

~ 2

wher e Kj is the average response to the jth expl anatory variable. |f

all individuals have the same response to the j th expl anatory vari abl e,

al Bij are identical and equal XJ. If individuals differ in their
responses to the jth expl anatory variable, the Bi.'s are different from
Xj; the differences Bi. - Xj are the between-individual differences.

The average nmagnitude of the between-individual differences (in the
sense of L2 distance) is given by Tj' (I'f the individuals have
identical responses, the corresponding paranmeter t is zero.) The node
(2) given above is usually known as the randomeffects or (variance
conponents) nodel. W will test separately the hypotheses that Xj =0
and Tj = 0; the two hypotheses together are equivalent to the globa
nul | hypot hesi s that Sij = 0.

Wien there are between-individual differences, it night be
desirable to relate themto observed characteristics of the individuals.
For exanple, one might be interested to know whether the individual's
response to air pollution is related to smking, i.e., whether a snoker
m ght be nmore sensitive to air pollution than a nonsnoker. W are
currently only capable of carrying out this analysis for dichotomus
characteristics. For exanple, we can conpare smokers with nonsnokers,
but we cannot relate the individual responses to a continuous specifi-
cation for snoking, such as the nunmber of cigarettes snoked per day.



- 50 -

For a dichotonous characteristic, we can partition the popul ation
into two subpopul ations, one corresponding to each |evel of the
characteristic. We then apply a random effects nmodel simlar to node
(2) to each subpopul ation, and conpare the parameters ¥ and t for the
two subpopulations. |If the characteristic being studied is related to
t he individual responses, the average response ¥ for the two
subpopul ations should differ. For exanple, if only snokers were
sensitive to air pollution, the average response ¥ for snmokers would be
nonzero, while the average response ¥ for the nonsmokers would be zero
If the relationship between the individual responses and the
characteristic being studied explains all of the between-individua
differences, the parameters t would be zero for both subpopul ations.

The main advantage of the Wittenore-Korn nodel is that each
i ndi vidual serves as his or her own control, which avoids the
confoundi ng problems with the cross-sectional nethods used in Sec. V.
Furthernore, since the nodel provides estimtes of each individual's
responses, it allows great flexibility in the neta-analysis on
differential susceptibility. W can contrast any two subpopul ations
defined in terms of any observed dichotonous characteristic for the
individuals. Thus, this nodel inproves on the average-response
specification in the aggregated daily approach

The Wittenore-Korn nodel also allows us to cal culate each person's
response to a local estimate of the pollution he or she is exposed to.
Again, this is an inprovement over the aggregated day-to-day approach,
whi ch uses one daily pollution value for everyone, introducing
measurenent error into the analysis.

One limtation of the nodel is that it applies only to short-term
effects. Another limtation is that, enpirically, the nodel cannot be
applied to people who are healthy alnost all the time or to people who
are sick almost all the time. The logistic regression nmodel usually is
not estimable (identifiable) for those people. For exanple, consider a
person who is healthy all the tine. The enpirical probability is zero
that the person will be sick on either a polluted day or a clean day.
The logit of the enpirical probability zero is minus infinity. The
effect of air pollution for this person is therefore (mnus infinity) -
(mnus infinity), which is indetermnate



- 51 -

Toward the end of this section, we wll discuss how we restrict our
analysis to those people with nore than a few sick days and nmore than a
few healthy days over a period of up to two years, and discuss the
implications of this restriction.

Application

For the health outconme in this analysis, we use a conbination of
restricted activities, school loss, and work loss as given in the
bi weekly health diary. For each person in the sanple on each day in the
study period, if the person reported either a day with restricted
activities due to health reasons, school |oss, or work loss, the day is
treated as a sick day, otherwise the day is treated as a heal thy day.

Because of limtations in the data, we need to make some revisions
in the Wiittermore-Korn nodel in order to apply it appropriately. One of
the inportant findings in Wittenore-Korn (1980) is the autocorrelation
bet ween daily disease statuses. For the same person, the day after a
sick day is nore likely to be a sick day than a day after a healthy day,
everything el se being the same. For nost people in our sample, there
are too few days-after-a-sick-day to allow reasonable estimation of this
effect; for exanple, for a person with ten sick days we have only ten
opportunities to estimate the probability of being sick the day after a
sick day. Therefore, for most of our analysis we delete all days after
a sick day and focus on the estimation for days after a healthy day. In
other words, we only estimate the probability for the transition from
the healthy status into a sick episode; a sick episode is dated to the
first day of a series of consecutive sick days. W do, however, take up
separately the questions of the length of sick episodes and how the
l ength of the episodes responds to air quality.

SAMPLE AND DATA
Sample and Health Outcome

The maxi mum nunber of people that could be used in this analysis is
2901--the nunber of H E participants were assigned to file health
reports while in the Seattle metropolitan area.” On the average we have

'The individual day-to-day approach has not yet been applied to the
Dayton sanple. That will be done during the second phase of the research.
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630 daily reports per person. The maximum nunber of days possible for
each person is 731. However, some of the participants noved out of the
Seattle area before the end of the health report study period and sone
failed to file all required health reports.

The H E participants averaged 4.34 sick episodes per person. The
distribution of sick episodes was fairly skewed. Mre than ten percent
of the HE participants had no sick episodes. The nedian value was 3
epi sodes.  The maxi mum val ue was 77.

As discussed earlier, the logistic regression nodel is usually not
estinmabl e when the number of sick episodes is too low, so we need to
restrict the analysis to people with nore than a few sick episodes. W
have chosen to include only those people with nore than the nedian
nunber of episodes (3). This leaves us with 1249 persons. However
those people report 10,582 sick episodes, which is mre than 80 percent
of the total number of sick episodes. Therefore, in terns of the nunber
of sick episodes, the |oss due to this restriction is ninor.

The restriction to people with nmore than a few sick episodes can be
viewed as an optimal strategy to nake the best use of analytic
resources. The people with a few episodes contribute |less infornation
than the people with one episode. (As discussed above, the response of
a person who is healthy throughout the study period is undefined, and
thus contributes no information at all.) In the next subsection, we
examne enpirically the inplications of this strategy.

The restricted sanmple of 1249 persons with nore than three episodes
yiel ds an average of 684 daily health reports per person. That average
exceeds that for the whole sanple because people with fewer health
reports are nmore likely to have three or fewer episodes and therefore be
del eted according to the restriction rule.

Not all person-days with health reports can be used in the
analysis. As discussed above, we use a sick episode instead of a sick
day as the health outcome, so we have to delete all days inmmediately
following a sick day. Furthernore, some days cannot be used in the
anal ysi s because of nmissing air pollution data. Wth those deletions,
we have an average of 425 days per person.
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There are a few people with very few days available for analysis.
We choose to restrict to people with at least 100 days available for
analysis. This restriction deletes 11 people and |eaves us with 1238
persons in the final analysis sanple. They average 429 days per person
and 8.5 sick episodes each.

EXPLANATORY VARIABLES

For this analysis, we use three groups of explanatory variables:
air pollution measures, neteorological neasures, and cal endar effects.

The air pollution data are from SAROAD and the Washington State
Department of Ecology. The following daily air pollution neasures are
used: daily average of sul phur dioxide (SOZ), daily average of
coefficient of haze (COH), daily average of TSP, daily maxi num hourly
average of ozone, and daily maxi mum hourly average of nitrogen dioxide
(Noz). Air pollution at a person's residence or work location is
assuned to be the same as that at the nearest nonitoring site (see the
di scussion of exposure in Sec. I1).

Val ues of the various air pollution measures are distributed over
days in a somewhat skewed fashion. The statistical measure of skewness
ranges between one and two. Had the skewness been larger, the results
of the analysis mght have been dom nated by a few outliers and woul d
t hus have been unstable. In such situations, it is necessary to
transformthe skewed variable to get nore stable results. Gven the
moder ate amount of skewness, we choose not to apply transfornations.

We also use daily mninmum tenperature and daily precipitation data
fromthe National Wather Service. Because neteorol ogical neasures are
available fromonly one weather station, those values are assuned to
apply to all residences and work |ocations.

The distribution of precipitation is very skewed, because nmore than
hal f of the days have no precipitation. |If the effect of precipitation
were of primary interest in this study, one might specify the effects of
precipitation as two entries in the logistic regression--one an
indicator variable for a day with precipitation, the other the anount of
precipitation (or a transformed amount). However, since the effect of

precipitation is not of primary interest in this study, we use a sinple
|inear specification.
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In addition to the aerometric data, we use two cal endar-rel ated
covariates to control for possible confounding effects. The first is an
i ndi cator variable for weekday versus weekend; this is a possible
confoundi ng factor because the levels of air pollution are usually
hi gher on weekdays than on weekends, and people are nore likely to
report sickness during weekdays than during weekends. The second is an
indi cator variable for the first week of each two-week health report
period. Because we use a self-adninistered diary that mght not have
been filled out daily, the accuracy of reporting in the earlier part,
say, the first week, mght be different fromthat in the latter part,
say, the second week.

The aeronmetric attributes are closely interrelated, e.g., ozone is
generated from a photochemnical process and usually has |ow or nul
| evel s on rainy days. Therefore, we expected substantial correlation
anong our explanatory variables. Explanatory variables that are highly
correlated mght be nearly collinear, i.e., one of the explanatory
variables mght be nearly a linear conbination of sone of the others.
In such cases, the logistic regression nodel might not be estimable or
mght be ill-conditioned, and the estimated results woul d be unstable.
Most of the pollution measures are indeed significantly correl ated, but
the magnitudes of the simple and multiple correlations are all noderate;
the largest ones are under 0.6 (see Tables C.1, C 2, and C 3). Thus,
collinearity among the explanatory variables is not a najor concern

GENERAL RESULTS

On applying the randomeffects mdel to estimate the average
responses and standard deviations of individual differences, we obtain
the results given in Table 5.1. For four of the pollution neasures
(Soz’ COH, TSP, and NOZ), the average effect of pollution is positive,
indicating that there is a higher probability of having a sick episode
on a polluted day than on a clean day. Fur two of the four (soz, N02),
the effect is statistically significant at the one percent level. The
average effect for ozone is negative and statistically significant, as
is the effect for mnimmtenperature, which is negative and
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Table 5.1

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL
SUMVARI ES FOR THE AEROMETRI C EFFECTS OVER
THE FINAL ANALYSI S SAMPLE (N=1238):
AVERAGE RESPONSES

Aerometric Esti mat ed z
Attribute Coefficient Statistic
S0, (ppm 7.94 6.12
COH 0. 0150 0.38
TSP (ug/m?® ) 0. 00061 1.50
Qzone (ppm -3.46 -4.46

NO, (ppm 1.33 3.18

M ni mum tenperature (F) -0.0132 -8.12
Precipitation (in.) 0. 684 12.8

statistically significant. The average effect for precipitation is
positive and statistically significant.

Table 5.2 summarizes the results for the average effects based on
the randomeffects mpbdel and on another approach to correcting the
analysis for the instability of outliers--analyzing individual z
statistics (see App. C. Wiile the two sets of results are not

Table 5.2

SI GNI FI CANCE OF THE AVERAGE RESPONSES

Aerometric Random Ef fects | ndi vi dual
Attribute Model z Statistics
+ *
802
COH + -
TSP + - :
Ozone - -
+ *
NO2 )
M ni mum t enper at ur e ¥
Precipitation +* +

NOTE: +: average response is positive;
average response is negative;
effect is statistically significant
at the 5-percent |evel.
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identical, they do not contradict each other: There are no instances in
whi ch one approach gives a statistically significant positive result and
the other method gives a statistically significant negative result.

The two approaches both indicate that ozone has a significant
association with |ower probabilities of sick episodes. The two
approaches al so agree that higher nininmm tenperature is significantly
associated with lower probabilities of sick episodes, and that
precipitation mght be associated with a higher probability of sick
epi sodes.

The randomeffects nodel indicates that S0, has a significant
association with higher probabilities of sick episodes, which is not
corroborated in the individual z statistic approach. |f we accept the
associ ation estimted fromthe randomeffects nmodel as real, the
magni t ude of the association can be interpreted as follows. The neta-
anal ysis estinmates that an increase of one ppmSO2 is associated with an
increase of 7.94 logit units in the probability of a sick episode. If
the average S0, level in downtown Seattle triples fromits present 0.01
ppmto 0.03 ppm the primary federal standard |evel for the annua
average, the probability that the average person woul d experience a sick
epi sode woul d increase by 0.16 logit units. For nost people the
probability of having a sick episode is small on any day, so the logit
scale is very well approximted by the logarithm scale. An increase of
0.16 in the logarithm of the probability of having a sick episode is
equivalent to nmultiplying the probability of a sick episode by 1.17.

For the final analysis sanple on the average, this is equivalent to a
increase from 0.020 sick episodes per person-day to 0.023.

Equi valently, a 10-percent increase in SO2 woul d cause sick
epi sodes per person-day to go from0.02 to 0.0202. The effects for
other pollutants are smaller. For COH, sick episodes would increase to
0.02002. For TSP, the sane increase would raise sick episodes to
0.0201. For ozone, sick episodes would fall to 0.0188. For NO, , si ck
epi sodes woul d increase to 0.0201

As di scussed above, an advantage of the randomeffects nodel is
that it allows estimation of the standard deviation for between-
individual differences. These are given as the tau parameters in Table

5.3.  For three of the aeronetric attributes, COH NO.,, and m ni mum

2’



- 57 -

Table 5.3

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL
SUMWARI ES FOR THE AEROVETRI C EFFECTS OVER
THE FINAL ANALYSIS SAWPLE (N=1238):
BETWEEN- | NDI VI DUAL DI FFERENCES

Aeromnetric z
Attribute Tau Statistic
SO2 (ppm 0.0 0.00

COH 0. 348 1.98

TSP (ug/m? ) 0. 00156 0.41
Qzone (ppm 5.54 1.38

NO, (ppm 5.53 4.24

M ni mum tenperature (F) 0.0193 3.28
Precipitation (in.) 0.0 0.00

tenperature, there is a statistically significant between-individua
difference, i.e., the individuals in our sanple do not respond simlarly
to these aerometric attributes. For two of the three, the tau paraneter
is much larger than the average responses given in Table 5. 1.

Therefore, a significant fraction of the people might have a response in
the opposite direction fromthe one given by the average response. For
exanple, the tau parameter for NO2 is 5.53, while the average response
is 1.33 (both given in terns of logit per ppﬁ]NOz.) If we take those
estimates as true values, we calculate that the probability of a
negative response (opposite the direction given by the average response)
for any given individual is 0.405. Thus, about 40 percent of the people
have a negative association between NO, and sick episode, while about 60
percent have a positive association.

We also found a strong negative association between the
coefficients and their standard errors (see Figs. C.8-C.14 in App. O
There are two possible explanations for this unexpected phenonenon
First, there may be a negative association between the true individua
coefficients and their true standard deviations. W find this
possibility unlikely because of the consistency of the negative
associ ations across the different pollutant and aeronetric variables.
Second, the observed negative associations may be a statistica
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artifact. W conjecture that the small sample bias of the maximm

l'i keli hood estimates of the logistic regression coefficients may be the
cause. In particular, individuals with smaller nunbers of sick episodes
may tend to have |arger (negative) biases. Since these sane individuals
will tend to have larger standard errors of their coefficients, this
could lead to the observed negative associations in Figs. C 8-C 14.

Fortunately, we are in the position to be able to test this
conjecture by performng some conputer sinulations in the second phase
of this project. By using the observed independent variables and
simul ating random sick episodes based on the logistic regression nodel
we wWill see if there is a negative association between the sinulated
estimated coefficients and their standard error. Since in this
simulation we will know that there is no association between the true
i ndividual coefficients and their standard deviations, we wll deternine
if the small sample bias of the estimated coefficients is the cause of
t he negative association.

The verification of this type of snall sanple bias would have
important inplications for the present analyses and for other studies
using the Wiittemre-Korn nmodel. First, it would suggest that the down-
wei ghting of the coefficients with the larger standard errors is
appropriate since they are likely to be nmore biased. If this were the
case, then the randomeffects analysis would be nore appropriate than
the z analysis. Secondly, it would suggest inprovements in the nethods
of analysis using the Wittenore-Korn nodel to reduce the small sanple
bi as.

COMPARISON OF SICKLY AND LESS SICKLY SUBPOPULATIONS

In this subsection, we contrast the responses to air pollution on
the part of sickly people with those of less sickly people. The first
criterion we use for sickliness is the number of sick episodes, rather
than the presence or severity of disease

We conpare the responses for those with 7 or nore sick episodes
(the sick subpopulation, containing 655 individuals, 53 percent of the
final analysis sanple) with those with 4 to 6 sick episodes (the less
si ckly subpopul ation, containing 583 individuals, 47 percent of the
final analysis sanple.)
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The average responses for the two subpopul ations are given in
Tables 5.4 and 5.5. The colum "z for the contrast” in Table 5.5 gives
the z statistics for the difference between the average responses in the
two subpopul ati ons.

Table 5.4

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL
SUMWARI ES FOR THE AEROVETRI C EFFECTS OVER
THE SI CK SUBPOPULATI ON ( N=655):

AVERAGE RESPONSES

Aerometric Esti mat ed z for the

Attribute Coefficient Attribute Efficiency
S0, (ppm 5.12 3.33 0.711
COH 0. 00811 0.18 0.722
TSP (ug/m*) 0. 00060 1.24 0.708
Qzone (ppm -3.60 -3.91 0.711
NO, (ppm 1.11 2.23 0.704

M ni mum tenperature (F) -0.0125 -6.43 0. 697
Precipitation (in.) . 0.576 9.37 0.751

Table 5.5

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL
SUMARI ES FOR THE AEROVETRI C EFFECTS OVER
THE LESS S| CKLY SUBPOPULATI ON (N=583):
AVERAGE RESPONSES

Aeronetric Esti mat ed z for the z for the
Attribute Coefficient Attribute Cont r ast
302 (ppm 14.9 6. 07 3.39
COH 0. 0435 0.58 0. 40
TSP (ug/m?) 0. 00043 0. 54 -0.18
Qzone (ppm -3.45 -2.34 0.09
NO2 (ppm 2.20 2.89 1.21
M ni mum tenperature (F) -0.0151 -5.08 -0.73

Precipitation (in.) 1.01 9.46 3.54
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The only two aeronetric attributes with significantly different
responses are 802 and precipitation. The less sickly subpopulation is
more responsive to 802--aInDst three times nore; it is also nore
responsive to precipitation--alnost twice nore. This result is
surprising because in the randomeffects nmodel for the final analysis
sanple as a whole (Table 5.3), we found no between-individua
di fferences for SO2 or precipitation. As discussed above, we expected
to detect differential susceptibility only for those aeronetric
attributes with significant between-individual differences. For the
final analysis sample, we found significant between-individua
differences only for NO2 and COH. W therefore expected that those
woul d be the two potential candidates for subpopul ation conparisons.

For the other attributes, the randomeffects nmodel for the fina

anal ysis sanple indicated that all individuals had the same response, so
we did not expect to see any difference between subpopulations. It is
especially surprising that the subpopulation difference is statistically
significant only in SO2 and precipitation, the only two aerometric
attributes with zero estimates for tau in the final analysis sanple.
These two attributes woul d have been the least likely to have any

bet ween-i ndi vidual differences. W do not have a good explanation for
this result.

The discrepancy in the response of the less sickly and sickly to
SO2 and precipitation inplies that there are sonme inportant limtations
for the generalizability of the results obtained through the
Whittenore-Korn nethod. As discussed above, we have chosen to include
in the final analysis sanple only those individuals with nore than three
sick episodes. W therefore have to question whether our results are
generalizable to the "very healthy" people with three or fewer sick
epi sodes. \Where the conparisons between sickly and healthy people
result in null findings, we nmight infer that the "very healthy" people
m ght have the sane response. However, the positive S0, findi ng

i ndicates that people's responses to SO, are associated with their

2
health. Thus, the response of the '(very healthy" people to S0,, cannot

be inferred fromour analysis.



- 61 -

If we regard the average responses given in Table 5.4 for the
si ckly subpopul ation and those given in Table 5.1 for the final analysis
sanple as two unbiased sets of estimtes of the same unknown true
parameters, then it is of interest to know how nuch nore information we
gain fromthe inclusion of the less sickly subpopulation. In other
wor ds, because the estimates in Table 5.1 are based on 1.89 times as
many people as the estimates in Table 5.4, do we gain alnobst twice the
information? We would expect not, because the precision of the-
coefficients of the less sickly people should be less than that of the
coefficients of the people with nore sick episodes. The results are
given as the "efficiency" colum in Table 5.4. The efficiency is based
on the precision of the estimted average responses. For each
aeronetric attribute, the efficiency is ratio of the variance of the
average coefficient in Table 5.1 to the average coefficient in Table
5.4, For all aerometric attributes, the efficiency of the sickly
subpopul ation is about 70 percent. In other words, the near doubling of
the nunber of individuals fromthe 655 sickly persons to the 1,238 in
the final analysis sample, owing to the inclusion of the 583 |ess sickly
persons, only increases the effective sanple size by about 43 percent
(i.e., 70 must be multiplied by 1.43 to get to 100). In other words
the anount of information for each healthy person is less than half that
for each sickly person.

It appears reasonable to conclude that the more sick episodes a
person has, the more information we can expect the person to contribute
This confirms our earlier conjecture that restricting the analysis to
people with more than a few sick episodes is an optimal strategy to neke
the best use of analytic resources.

Tables 5.6 and 5.7 give the between-individual differences within
each of the two subpopulations. In terns of estimating the tau
paranmeter, the standard deviation of between-individual differences, the
si ckly subpopul ation has efficiencies of about 80 percent. Thus, for
estimating tau, the near doubling of sanple size with the inclusion of
the less sickly subpopulation increases the effective sanple size by only
about 25 percent. In other words, each sickly individual contributes
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Table 5.6

META- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL
SUMVARI ES FOR THE AEROMETRI C EFFECTS OVER
THE SI CK SUBPOPULATI ON ( N=655):

BETWEEN- | NDI VI DUAL DI FFERENCES

Aeronetric z for the
Attribute Tau Attribute Efficiency
SO2 (ppm 3.37 0.17 0.801
CCH 0. 381 2.16 0. 827
TSP (ug/m?) 0. 00279 1.14 0. 756
Qzone (ppm 6. 48 1.68 0.788
N02 (ppm 5.87 4,27 0.798
M ni num tenperature (F) 0.0214 3.57 0.793
Precipitation (in.) 0.00 0.00 0. 867
Table 5.7
MVETA- ANALYSI S BASED ON THE RANDOM EFFECTS MODEL
SUMWARI ES FCR THE AEROMETRI C EFFECTS OVER
THE LESS SICKLY SUBPOPULATI ON (N=583):
BETWEEN- | NDI VI DUAL DI FFERENCES

Aeronetric z for the z for the

Attribute Tau Attribute Cont r ast

SO2 (ppm 0. 00 0.00 -0.07

CCH 0. 00 0.00 -0.82

TSP (ug/m*) 0. 00 0. 00 -0. 42

Ozone (ppm 0.00 0.00 -0.68

N02 (ppm 1.76 0.186 -1.68

M ni num tenperature (F) 0.00 0.00 -1. 47

Precipitation (in.) 0.00 0.00 0.00

about four times the information that a less sickly individua
contributes to the estimtion of tau.

For the less sickly subpopulation, all the aeronetric attributes
except NO, have no between-individual variation; even the tau parameter
for NO, is statistically insignificant. Thus, although there appear
to be some nontrivial differences in the tau parameters within each
subpopul ation, none of the differences is statistically significant
(fromthe colum ("z for the contrast" in Table 5.7)
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W al so examined differences in individual responses to air
pol lution and weather for two other definitions of sickliness. First
we split the subpopulation into those with FEV1 greater or less than
that expected given the individual's sex, age, and height. Second, we
split the population into those with or without synptonms of chronic
obstructive pul monary disease. For both conparisons, we found no
statistically significant differences in either the average responses or
bet ween-i ndi vi dual responses. (See App. C for details.)

COMPARISONS OF OTHER SUBPOPULATIONS

W have al so examined differences in responses between children and
adults (18 and over) and between snokers and nonsnokers. For both sets
of conparisons, there were no statistically significant differences in
average responses to air pollution. However, there was significantly
| ess between-individual variation in children's responses to NO, than in
adults'. (See App. C for details.)

LENGTH OF EPISODE

W al so exami ned how the length of the episodes varied with air
quality. The dependent variable was the logarithm of the nunber of days
in the episode. The independent variables included the sane set of
nonaeronetric variables used above. For the air quality measures, we
included the air pollution on the first day of the episode and on the
prior day. The response was estimated using a fixed effects nmodel; that
is, each individual's variables were taken as a deviation from that
person's nean, and OLS was used on the deviated data

We found no statistically significant association between air
pol lution and the length of the episode F(10, 10386) = 1.06. Thus, we
believe that the response of time lost to illness (in days) is largely
captured by the nunber of episodes of illness.
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V1. INDIVIDUAL STUDY-LONG APPROACH: METHODS AND RESULTS

Qur final approach was to analyze the internediate-run effects of
curmul ative exposure to air pollution over two-and-a-half to five years
upon the change in each individual's health fromthe beginning to the
end of the study. Each individual serves as his or her own control and
provi des one data point for the estimation of effects.

METHODS
Sample

The sanples for the study-long, health-effects analysis consisted
of the 2,386 people in Seattle and the 956 in Dayton for whom we had the
following information: (1) enrollnent and exit health-status data, and
(2) 30 or nore nmonths of residence or work location data, so we knew the
| evel s of pollution they were exposed to. By design, everyone who
compl eted the study except newborns should have had nedical history
questionnaire enrol Il ment data. * Thus, restricting the sanple to those
with enrollnent information costs very little in precision. One of the
heal th neasures, lung function, was collected in the screening
exam nation that was given to all adults at exit, but to a randomy
sel ected 60 percent at entry. For this nmeasure, we had to use an
efficient statistical nethod for conbining the 60 percent with entry
values with the other 40 percent (Dagenais, 1971).

Restricting the sanple to those with extensive pollution data
excludes those who noved early, and also the approximtely 10 percent of
enrol l ees who did not conplete the study for whom we have no exit
information. Mst of those people left during the first year. Since
the pollution levels differ from season to season and year to year,
average pollution exposure for individuals with short periods of
pollution data differed systematically from that for people who stayed
in the study longer, and including them would have confounded the
results. Since we have exit health information on those who noved, we

'Form and item nonresponse were very |ow on enrol |l ment data
col l ection.
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did include people who noved after staying nost of the tine where we
could nonitor pollution |evels.

Dependent Variables

We assessed effects on the HHE' s General Health Index, a summary
integrative neasure of health perceptions, and a set of respiratory
health indicators. The GH is based on answers to 22 questions for
adults and seven itenms for children (aged less than 14) that assess
health generally.' It is scaled fromO (worst health) to 100 (best
health). The average for our full adult sanple is 71, with a standard
deviation of 15.

For adults,"” our respiratory health indicators included
FEVl/predicted FEVl, a general neasure of lung function, which should be
sensitive to widespread nmild effects on the order of mnor changes in
snoki ng behavior.* W also used self-reported hay fever, chronic
bronchitis, shortness of breath, and frequency of chest pain (in Dayton

pai n when exercising) as neasures of self-reported illness. For
children less than 14, we used two neasures of illness: hay fever and
ast hma. Information on all these nmeasures is displayed in Table 6.1 for

Seattle; the Dayton values are simlar

The health neasures were also used to define a susceptible group
for separate analysis. W hoped that this would shed light on overal
general results and give nore precision to analyses of rarer problens.
The susceptible group of adults used in these anal yses were those over
18 at enroll ment who reported chronic bronchitis, congestive heart
failure, chest pain, or shortness of breath. These were 354 out of
1,502 adults in the Seattle sanple and 120 out of 661 adults in the
Dayton sanple. In the Seattle sanple, there were 64 children who could
reasonably be deemed "susceptible"; in Dayton, there were too few to

2There were actually two questionnaires, one used at entry in
Dayton and the other at entry in Seattle and at exit in both cities.

*The cutoff age used by the HE for adulthood varied with the
measure.

“Lung capacity depends on height, age, and sex, as well as disease.
We control these factors using the results of Kory et al. (1961) and
Kory and Smith (1974). See Foxman et al. (1982) for details.
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Table 6.1

EXIT VALUES OF DEPENDENT VARI ABLES USED IN ANALYSI S

Direction
Standard of Better Time Period
Vari abl e Mean Deviation Range Health Consi der ed

Adult CH 72 15 0-100 + --
Hay ' fever status 1.44 0.8 1-3 -- | ast year
Shortness of breath 0.17 0.5 0-4 - | ast 3 nonths
Chronic bronchitis

(phl egm 0.12 0.4 0-3 - | ast year
Chest 'paina 0.3 1.1 0-6 -- | ast year
Exercise pain 0.08 0.3 0-2 -- | ast year
Lung function (per-

cent pred. FEVl) 100 18 21- 164 +
Child cH 77 15 30- 100 +
Hay fever status 1.34 0.7 1-3 - | ast year
Ast hma st atus 0.43 1.7 0-8 -- | ast year

#Chest pain used in Seattle.
Exerci se pain used in Dayton because chest pain not available.

even attenpt a statistical analysis (because hay fever was not on the
Dayton enroll ment child-health questionnaire.

Air Quality Variables

In this analysis, we began with six neasures of air quality:
average TSP, SO,,
hourly ozone over the course of the study. (See the discussion of

COH, and CO average daily maxi mum ozone; and maxi mum

exposure in Sec. Il for nore details.) The maximum hourly ozone measure
was used only in Seattle, since that measure did not exhibit enough
geographi cal variation in Dayton to make it useful. CO was used in
Dayton but not Seattle. Al neasures except nmaximum hourly ozone were
averaged over the full period for which we had data. Correlation

anal yses showed that the various measures of long-run air quality were
relatively independent in Seattle, with COH and S0, having a pairw se
correlation of 0.45, and the rest of the pairwise correlations all below
0.25. W dropped COH from the Dayton anal ysis because we found COH
SOZ’ and ozone to be highly correlated. TSP and CO were not correlated
with any of the other nmeasures. For npst analyses, we split the
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popul ati on by exposure quartiles for each neasure and contrasted those
whose air quality was in the worst one-fourth and the second-worst one-
fourth against those in the best half. Because there did not appear to
be strong nonlinearities in health effects, we can use the measures
directly. The results with continuous nmeasures of air pollution are
quite simlar to the results with indicator variables.

Because air quality can have short- and long-run effects on health
status, we also used measures of air quality in the nonth preceding
measurenent at the start and end of the study. W expected that the
general health neasures--GCeneral Health Index, lung function--would be
most affected by imediate experience. Also, the shortness-of-breath
scal e was based on recall of only the nobst recent three nonths. Even
the other specific disease neasures, which asked for experience over the
past year, could have been colored by recent experience. By taking the
difference between air quality at the exit exam and at the enroll ment
exam we obtain a neasure that is independent of |ong-run average
experience, and should capture short-run effects on the final outcone.
In Seattle, the enrollnent S0, val ues were unusual --negatively
correlated with the long-run average--so we used only the exit val ue.

I n Dayton, SO2 was nmeasured for only half the participants at exit, so
we used only the enrollnent values as an independent variable.

Model

Did air quality over the course of the study affect health at exit?
To answer that question, we used regression methods to estimte effects
of exposure history controlling for initial value of health, age, sex,
race, education, smoking history, and tine in study (3 or 5 years).
Because health is stable over time, the npst inportant explanatory
variable is the health neasure at enrollment. This can be incorporated
in three ways: First, by looking at changes over tinmne:

Health (exit) - health (entry) = a + b1 X age + (1)

b2 X pack years . . . + c, X ozone + ¢, X TSP .
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Second, by bringing health at entry to the right-hand side and not
constraining its coefficient to be one:

(2) Health (exit) = d x health (entry) + a + bl x age + (2)

b2 x pack years .. . + ¢, X ozone +c, x TSP . .
Third, by omtting entry health altogether--dropping d x health (entry)
fromEq. (2):

Health (exit) = a + b1 x age + b2 x pack years . .. (3)

+ ¢, x ozone + ¢, x TSP . .

1 2
The advantage of Eg. (3) is that long-term effects on people whose air
qual ity exposure is fairly stable over time will also be seen in health
at entry, so that taking differences as in the top two equations wll
dilute the apparent effects of lifetime air quality. The disadvantage
of the last (cross--sectional) approach is that it is very vulnerable to
bias arising from selection by people of where they live and work.
Equation (1) is best against bias, but is overly affected by random
variation of health at entry. |n Eq. (2), the regression nethod selects
the appropriate weight to put on health at enrollment, and this mddle
specification is the one presented nost often in this section.

RESULTS
Adults

The GH is the nobst aggregate neasure of health effects studied.
For adults, the effect on general health status exerted by each air
qual ity neasure taken separately is shown in Table 6.2. Dashes indicate
t-values less than one in absolute value, and the blanks on the best
quarter indicate it was the group against which the others were
compared.  Maxi mum hourly ozone measure had significant adverse effects
in Seattle. People in the worst two quarters for average daily maxinum



- 69 -

Table 6.2

EFFECTS OF SINGLE POLLUTANTS ON ADULT GENERAL HEALTH | NDEX

Qzone QOzone
Variabl e TSP SO COH  Average  Max. CO

Seattle (N = 1640)

Worst quarter -1.0 -- -1.0 -1.92

Second- wor st -1. 0.9 -- -2.3a
Second- best 1 .- - .-
Best (reference group)

v .
RN

Dayton (N = 661)
rst
Second- wor st

Second- best
Best (reference group)

[
PN
P '
— O
[
PN
e '
N o

NOTE :  See subsection on nethods for interpretation of GH .
Nunbers represent average differences in average GH from those
with least pollution exposure. Only coefficients with a t-value
greater than 1 in absolute value are shown. Blanks indicate that
the variable was not included

83ignificant at 0.05 | evel .

ozone had a GH score of nore than 2 points |ower than those living in
the best areas by that measure. This is about one-fourth the difference
found between those with diabetes or chronic obstructive pul monary

di sease and those nondi seased adults in the sanple. I n Dayton, however,
there was no effect of ozone. Qher air quality neasures in Dayton and
Seattle had |ess significant adverse effects, except for S0, , whi ch had
an insignificant positive effect in Dayton. These results and further
results for lung function were not sensitive to a nunber of mnor
variations: (1) whether the entry and exit exam val ues were used; (2)
whether air quality neasures were split by quartiles (as in Tables 6.2
and 6.3) or entered linearly (as in Table 6.4); (3) whether teenagers
were included or not; and (4) whether air quality measures were

consi dered one by one, as in Table 6.2, or all at once, as in the
subsequent tables. Thus, in Tables 6.3 and subsequently, the results
give partial effects of each pollutant controlling for the others. The
initial value of GH was by far the nost inportant predictor of exit CH.
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Table 6.3

REGRESSI ON COEFFI Cl ENTS FOR GENERAL ADULT POPULATI ON,
SPLIT BY QUARTILES: SEATTLE

Short ness Chronic

Lung Hay of Bronchitis Chest

Vari abl e CH Function  Fever Breath (Phl egm Pai n
Initial measure 0.60%  0.44% 0.72%  0.35%  0.28% 0.212
QOzone

Max, worst quarter T 4.72 -0.12% 0.06 -0.04

Max, second wor st - 2.82 - 0.09% o +0. 12

Avg, worst quarter -2.12 -- -- T 0.03

Avg, second worst -2.62 2.48 -- -- +0. 11
TSP

Worst quarter T 2.4 -0.08 o -0.04 -0.272

Second wor st T 2.1 -0.04 - -0.04 -0.09 .
CCH

Worst quarter - -- - -

Second wor st -1.3 T -0.05 -0.05
SO2

Wrst quarter o T T 0.06 0.03 --

Second wor st +1.1 1.3 o 0.04 -0.03 --
O her variablesb

Sanpl e size 1,499 1,235 1,499 1,296 1,338 1, 346

R? 0.38 0.34 0.54 0.26 0.15 0.11

NOTE: Adults defined as 14 and over for GH and hay fever, 18 and over
for shortness of breath, chronic bronchitis, and chest pain. See subsection

on methods for interpretation of GH. Only coefficients with t-values greater
than 1 are shown.

3gignificant at 0.05 | evel .

bAge, female, female x age, nonwhite, four measures of snoking
behavi or, education, time in study (3 or 5 years).
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As shown in Tables 6.3 and 6.4, better lung function was associ ated
with poor air quality in Seattle, and the association with ozone was
significant. For the other four neasures, a high score indicates nore
disease, so a negative sign (as in hay fever) shows a positive
association of hay fever with good air quality, and positive signs (as
in the shortness-of-breath scale) show a positive association of
shortness of breath with poor air quality. For these diseases, higher
TSP is consistently associated with better health, and higher so, often
with worse health, in Seattle. However, virtually all of these effects
are not significant at the 5 percent level. There were fewer effects in

Table 6.4

EFFECTS ON GENERAL ADULT POPULATI ON, ENTERED CONTI NUOUSLY:  SEATTLE

Short ness Chroni c

Lung Hay of Bronchitis  Chest
Vari abl e CH Function  Fever Breath (Phl egm Pai n
Initial neasure 0. 60 0. 47 0.72 0. 34 0. 28 0.21
Ozone max - 74 -2.55 0.79 -0.73
t - 2.76%  -2.80%  1.02 1.14
Ozone average -678 613 16 11.50 10. 90
t -2.54% 1.64 1.26 1.08 1.23
TSP average " T -0. 0044 " -0. 002 -0. 006
t - - -2.572 - -1.68 -1.992
COH aver age 5.7 0.35 T
t 1.3 1.69 a-
S0, average
t
, b
O her variables
Sanpl e size 1,499 1,313 1,499 1,296 1,338 1, 346
R? 0.38 0. 54 0.26 0.15 0.09

NOTE : See notes for Table 6. 3.
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Dayton, as shown in Tables 6.5 and 6. 6. | ndeed, npbst of Table 6.5 is
bl ank.

In Seattle, results for the susceptible population are generally
| ess significant, because the sanple is much snaller (Tables 6.7 and
6.8). The negative coefficients relating the GH to air quality are as
| arge as those for the general population, but they are not significant.
The consistent associations between poor air quality and better |ung
function are not present in the susceptible group, and indeed, the
effects of ozone are reversed. The associations between bad air quality
and shortness of breath are nuch larger in the susceptible group.

Table 6.5

EFFECTS ON GENERAL ADULT POPULATI ON, SPLIT BY QUARTILES (DAYTON)

Short ness Chronic

Lung Ha of Bronchitis Exercise

Vari abl e CH Function  Fever Breath (Phl egm Pai n
Initial neasure 0.68 0.68 0.60 0.56 0.39 0.30
Ozone

Worst quarter -- -- -0.19 -- -0.06 -0.05

Second wor st -- - -- 0.13 - -
TSP

Worst quarter - - -0.192

Second wor st -- -- --
COH

Worst quarter -- - - - - -

Second wor st -- 2 -- 0.09 -- -0.05
802

Worst quarter

Second wor st -- - -0.192
O her variablesb

Sanpl e size 661 494 637 540 546 572

R 0. 39 0. 41 0. 27 0. 29 0. 20 0. 20

NOTE : See notes for Table 6.3.
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Table 6.6

EFFECTS ON GENERAL ADULT POPULATI ON, ENTERED CONTI NUOUSLY: DAYTON

Shortness  Chronic
Lung Hay of Bronchitis Exercise
Vari abl e GH Function  Fever Breath (Phl egm Pai n
Initial neasure 0.68 0.65 0.61 0.56 0.39 0.30
Ozone -18 -7 -4.3
t -2.39 -1.64 -1.13
TSP average -0. 005
t -2.01
CO average 0.16 0.10
t 1.12 1.56
S0, average - 75
t -2.80
. b
Ot her variables
Sanpl e size 661 523 637 540 546 572
R 0.38 0. 27 0. 29 0. 20 0. 20
NOTE : See notes for Table 6.3.
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Table 6.7

EFFECTS ON SUSCEPTI BLE ADULT POPULATION, SPLIT BY QUARTILES: SEATTLE

Lung Shortness Chronic
Func- Hay of Bronchitis  Chest

Variabl e GHI tion Fever Breath (Phl egm Pai n
Initial neasure 0.6 0.53 0. 65 0.32 0.19 0.21
Ozone

Max, worst quarter - T

Max, second wor st -2.4 T 0.11

Avg, worst quarter -2.0 -3.60 o o

Avg, second wor st T T " T - 0.27
TSP

Worst quarter -2.1 -- -0.11 0.12 o o

Second wor st . -- T T -0.09 -0.31
COH

Worst quarter T -- T T --

Second wor st -- -- 0.20 -0.16 --
SO2

Worst quarter -- o T 0.212

M ddl e quarter -- 2.70 T 0.15 T 0.492
O her variablesb

Sanpl e size 352 291 335 316 332 351

R? 0.42  0.46  0.50  0.35 0. 20 0.19

NOTE: See notes for Table 6. 3.
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Table 6.8
EFFECTS ON SUSCEPTI BLE ADULT POPULATI ON, ENTERED CONTI NUOUSLY:  SEATTLE
Lung Shortness Chronic
Func- Hay o Bronchitis Chest
Variabl e GHI tion Fever Breath (Phl egm Pai n
Initial neasure 0.6 0.51 0. 66 0.31 0.20 0.20
Ozone max T " -3.5 o T T
t - - -1.56 T "
Ozone average 850 . 42.5 25
t -1.48 - 1.35 1.00
TSP aver age -0.13 -0. 007 T T --
t -1.5 -1.5 --
COH average 9.8 0.68 -1.41
t 1.05 -- 1.34 -- -- -1.39
S0, average - -- - -- -- 90
t -- -- -- -- -- 1.79
Q her variablesb
Sanpl e size 352 319 335 316 332 351
R 0. 42 0.50  0.33 0. 20 0.16

NOTE : See notes for Table 6.3.
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In Dayton, the effects of air pollution on the health of
susceptibles are insignificant (Table 6.9 and 6.10), as would be
expected from the insignificant effects on the general population. The
negative coefficients relating the GH to air quality are larger than
those for the general population, but they are not close to significant.
The associ ations between poor air quality and better lung function, |ess
hay fever, and |ess exercise pain are nore consistent and stronger in
the susceptible group. The results for exercise pain are the nost
striking. Since "never exercise because of chest pain" is scored the
same as pain while exercising, this correlation is not the result of

Table 6.9
EFFECTS ON SUSCEPTI BLE ADULT POPULATI ON, SPLIT BY QUARTI LES: DAYTON

Lung Shortness  Chronic
Func- Hay of Bronchitis  Chest
Vari abl e GH tion Fever Breath (Phl egm Pai n
Initial measure 0. 56 0.55 0.55 0.53 0. 27 0.15
Qzone
Avg, worst quarter - - -0.32 _p.51 - -0.31
Avg, second wor st T 6 - - - -0.262
TSP
Worst quarter - 78 -0.312
Second wor st -5 4 .
CO
Worst quarter T 7 T T T -0. 32
Second wor st -7 5 T T T -
302
Worst quarter T o T 0.20
Second wor st T " . - - -
Q her variables]:>
Sanpl e size 122 103 121 115 115 116
R? 0. 46 0.56  0.34 0.39 0. 22 0.43

NOTE : See notes for Table 6.3.
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Table 6.10

EFFECTS ON SUSCEPTI BLE ADULT POPULATI ON, ENTERED CONTI NUCUSLY: DAYTON

Lung Shortness Chronic
Func- Hay of Bronchitis Exercise
Variabl e GHI tion Fever Breath (Phl egm Pai n
Initial measure 0.64 0.40 0. 47 0.54 0.21 0.08
Ozone average -- 378 - 26 -45 -25 -36
t - 1.29 -1.25 -1.53 -1.56 -2.41
TSP average -- 0.13 -0. 008 -- -- -0.012
t - 1.05 -1.17 - -- -2.48
CO average -7.5 -0.58
t -1. 04 -2.29
SO2 wor st -- 1,776 -- -61
t - 2.18 - - -1.16
Ot her vari abl es
Sanpl e size 116 108 115 115 115 116
r2 0.43 - 0.29 0.34 0.21 0. 37

NOTE : See notes for Table 6. 3.

peopl e staying inside. Perhaps it reflects selection out of lowair-
qual ity areas by people with angina.

In the nodel that produced the results in Tables 6.3 through 6. 10,
exit health was a linear function of entry health and other variabl es.
We also | ooked at two other specifications. First, we used change in
general adult GH and lung function, entry to exit, as the dependent

variable, i.e., Mdel (1) above. The results for effects of air
pollution on changes in health were simlar to results for exit health
val ues regressed on initial. This is not surprising since both the GH

and lung function are quite stable over tine. Thus, the coefficients of
the initial measure shown in the tables on general adult health are not
too different from+1 (the value inplicitly assumed by studying

changes).



Second, we considered the purely cross-sectional

regressing exit GH
air pollution during
Tables 6.11 and 6. 12.

di fferences between people,
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results of

and lung function values on cunulative exposure to

the study period.

These results are shown in

Since there is no adjustment for the stable

measures is explained (R2 is much smaller).

In Seattle,

lung function stay the sane.

health are simlarly

correlated with air quality,

Table 6.11

much less of the variation in the health

the associations with air quality for both the GH

it seens that the

EFFECTS OF POLLUTANTS ON HEALTH I N SEATTLE:

A CROSS- SECTI ONAL  ANALYSI S

CGener al CGener al
Heal th Lung Heal th Lung
| ndex Functi on | ndex Functi on
Vari abl e (End) (End) (Start) (Start)
Ozone
Max, worst quarter -- 98
Max, second wor st 1.1 .52 -1.4 3.1
Avg, worst quarter 1.6 1.5 o T
Avg, second worst  -3.0% 2.5
TSP
Worst quarter -6.1°%
Second wor st -2.4
CCH
Worst quarter
Second wor st
802
Worst quarter
Second wor st 1.5 -4.08
O her variablesb
Sampl e size' 1,642 1,235 1, 649 667
R? 0.08 0. 04 0.17 0.13
NOTE ©:  See notes for Table 6.3.

and

Since both the change in health and exit
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Table 6.12

EFFECTS OF POLLUTANTS ON HEALTH | N DAYTON:
A CROSS- SECTI ONAL ANALYSI S

Gener al CGener al
Heal t h Heal t h
| ndex Lung | ndex Lung
. (End) Function (Start) Function
Vari abl e Suscepti bl es (End) Susceptibles (Start)
Ozone
Worst quarter -8 -gd -118 -6
Second wor st - -62 -4 -5
TSP
Worst quarter -5 -5 -5 -3
Second wor st -6 -3 T -4
CO
Worst quarter
Second wor st -92 - -4 . -5
802
Worst quarter
Second wor st -7 -4 --
Q her variablesb
Sanpl e size 116 265 116 265
R 0. 32 0.23 0. 39 0.23

NOTE: See notes for Table 6. 3.

initial value, the variable used to adjust for stable differences, nust
not be highly related to subsequent air quality. This conjecture is
somewhat borne out by the last two colums of Table 6.11. Genera
health is not greatly associated with subsequent ozone, and poorer |ung
function is associated with higher TSP and SO2 levels. How can health
change and exit health be associated with pollution |evels during the
study while initial health is not? One possible explanation is
geographi cal sorting prior to the study. Another is that air quality
before the study started is not highly correlated with subsequent air
quality, and that there are noticeable mediumrun responses to the
change. Another explanation is that the increased precision of the
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before-and-after technique reveals sonmething missed by the cross-
sectional approach.

In Dayton, on the other hand, the cross-sectional analysis yields
consistent positive associations between low air quality and both the
CH and lung function. Contrasting the cross-sectional with the
| ongi tudi nal anal yses, we see that poor health may be related to low air
qual ity cross-sectionally, but that the relationship does not increase
over time. The cross-sectional relationship my be due to selection or
previous |ong-term exposure, but exposure over the three years of the
study does not seemto have had many effects.

We incorporated variables representing air quality for the nonth
before the initial and final exams. These short-termeffects on
physi ol ogi cal neasures were generally weak, but in the right direction
(adverse). Because short-term air quality was not highly correlated
with long-termair quality, inclusion or exclusion of short-term
measures had little effect on the estimated effects of long-termair
quality.

Children

The GH for children under 14 was associated with air quality in
Seattle in a peculiar way (Tables 6.13 and 6.14). There were strong
associations of better health with higher levels of TSP and |ower |evels
of ozone. Hay fever was not associated with air quality, but higher
| evel s of ozone were related to nore asthm

The Dayton results were nmore consistent, if unexpected. Higher
levels of all air pollutants were associated with better general health
and less hay fever (Table 6.15). Several of these effects were
significant. Asthma was not associated with air quality.

The sanple of susceptible children in Dayton was too small to be
analyzed. Even in Seattle, the sanple of susceptible children with
compl ete information was so snmall that only very large effects would
have been significant. No such effects were found, but the right halves
of Tables 6.13 and 6.14 show sone nmarginal effects. The (positive)
effect of TSP on general health disappears, but otherwi se the results
for sickly children are sinmilar to the results for all children
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Table 6.13

EFFECT OF AIR QUALITY ON HEALTH IN CH LDREN UNDER 14,
SPLI T BY QUARTILES: SEATTLE

Al Children Susceptible Children
Gener al Hay CGener al Hay

Vari abl e Heal t h Fever Ast hma Heal t h Fever Ast hma
Initial val ue 0.42%  0.63%  0.52%  0.45%  0.08 0.542
Ozone

Max, worst quarter -- -- -- -- -- -1.5

Max, second wor st 3.1 -- 0.82

a

Avg, worst quarter -3.82 - 0.9 5 1.6

Avg, second worst -2.6 - 0.4 -
TSP

Worst quarter 6.42 --

Second wor st §.62 --
CCH

Worst quarter T T T -6

Second wor st o -0.17 -- --
802

Wrst quarter -- 0.14 -0.4 T o -1.0

M ddl e quarter - -- -- -- -- --
O her variables]:>

Sanpl e size 630 423 251 0.41 0.19 0.51

R? 0. 25 0.34 0.27 64 63 37

aSignificant at 0.05 | evel.

bAge, female, female x age, nonwhite, two neasures of parental snoking

behavi or, parents' education, time in study (3 or 5 years).
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Table 6.14

EFFECTS OF AIR POLLUTION ON HEALTH IN CH LDREN UNDER 14
ENTERED CONTI NUOUSLY: SEATTLE

Al Children Susceptible Children
Gener al Hay Gener al Hay
Vari abl e Heal th Fever Asthma  Health Fever Ast hma
Initial value 0.43 0. 64 0.53 0.43 0.12 0.51
Ozone g ax -0.49 -- -- 187 -9.8
t -1.10 - - 1.12 -1.06
Ozone average -1, 175 -- 340 -- -- 1,123
t -1.73 -- 2.69 -- - 2.02
TSP average
t
COH average - 0.89 1.88 4.0 7.8
t -- 1.62 1.12 2.39 1.40
502 aver age -- -- -130 -- -82 -419
t -- -- -1.55 -- -1.01 -1.41
O her variablesb
Sanpl e size 629 423 251 64 63 37
G \ 0.23 0.34 0.25 0.39 0.24 0.50

NOTE: See notes for Table 6.13
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Tabl e 6. 15

EFFECT OF AIR QUALITY ON HEALTH I N CHI LDREN UNDER 14,
SPLIT BY QUARTILES: DAYTON

CGener al Hay

Vari abl e Heal t h Fever Ast hma
Initial Value 1.04 -- 0.41
Ozone

Avg, worst quarter 7.32

Avg, second wor st 6.52 --
TSP

Worst quarter -- -0.21 T

Second wor st -- -0.22 0.49
Co

Worst quarter 4.6 -0.462

Second wor st T -0.17
SO2

Worst quarter T 0.29

Second wor st .- --
O her variablesb

Sanpl e size 283 269 109

R? 0. 19 0.100  0.37

NOTE: See notes for Table 6.13.
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CONCLUSIONS

In the general Seattle sanple, CGH seermed adversely affected by
ozone, and better lung function was associated with nost of the neasures
of air quality. The picture for specific diseases is |less clear. Anpbng
susceptibles, both the negative effects on general health and the
positive effects on lung function are less significant; indeed, ozone
may have a negative effect on lung function, but the results are not
significant enough for clear interpretation. Either the effects are
weak, or there are sinply not enough susceptibles here to show nuch.

For children, mobst of the results are in the "right" direction, but few
are significant.

Effects in Dayton were even less significant than those in Seattle,
and many showed an unexpected association of better health with poorer
air quality (Table 6.16). In fact, we did not find a single significant
effect of lower air quality in Dayton. The general health of adults was
unrelated to air quality, but hay fever and lung function in susceptible

Table 6.16

EFFECT OF AIR QUALITY ON HEALTH IN CHI LDREN UNDER 14,
ENTERED CONTI NUOUSLY: DAYTON

CGener al Ha

Aver age Heal t h Fevgr Ast hnma
Initial Value 1.12 - - 0.39
Ozone average 1,071 -20

t 3.26 -1.07
TSP average 0.10 -0. 006
t 1.26 -1.42
CO average 6.4 -0.51
t 1. 46 2. 07
SO2 aver age 2,026 --
t 1.90
. b
O her variables
Sanmpl e size 283 269 109
R? 0.19 0.08  0.35

NOTE : See notes for Table 6.13.
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groups and hay fever and general health in children were associated
in the "wong" way. Ozone, in particular, was generally related to
better health. Specific health problens showed even nore insignificant
results than the general health neasures. The main reason for the |ack
of significant effects in Dayton is probably sanmple size.

This study of internediate range effects used a before-and-after
met hod instead of the cross-sectional approach nost commonly seen.
Using initial status as a control reduces the problem of selection bias,
but allows us to look only at changes over the course of observation
(here 3 or 5 years). The cross-sectional approach will be relatively
better if people do not nove nuch and select work and home | ocations
i ndependent|y of pollution levels, and if air pollution effects on
health are gradual. |If people do nove in such a way that health is
correlated with pollution, then cross-sectional studies can be quite
msleading. As it turned out, the cross-sectional results differed
between Seattle and Dayton, evidence that selection may be nore
responsi bl e for these observed results than accrued damage to heal th.
ldeally, one would like a before-and-after design with a very |ong
period for health effects to appear, but followup in such studies is
difficult and expensive.
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VIlI. DISCUSSION

The results in the preceding sections exhibit a mxed set of
associ ations between air pollution and the three classes of health
outconmes: use of outpatient medical services, time lost due to illness,
and health status. They also exhibit a mixed set of results depending
on the nethod used to estimate the adverse effect of air pollution. In
many cases, higher levels of air pollution are associated with better
heal th out cones.

Cl oser examination reveals several patterns. Two of those are of
special note because they dominate the overall pattern of "perverse"
results, where higher levels of air pollution are associated with better
heal th outcones. First and nmost striking is the large nunber of
significant results for ozone. (Ozone was responsible for many of the
significant effects--largely positive (beneficial) in the case of
outpatient health expenditures and time lost to illness, and both
positive and negative (adverse) in the case of the health status .
measures. There were positive estimates for ozone from both the annua
(cross-sectional) and panel results and from both the short-term and
intermediate-term results

The second trend is the large nunber of significant results
obtained in the aggregated day-to-day approach, which is a pane
analysis for a fixed population. Three quarters of the estimated
effects are significant at the 10 percent level, and half are
significant at the 1 percent level. O the significant results, half
are positive (beneficial). Al of the pollutants except CO have at
| east one significant and "perverse" positive effect.

In contrast, the individual daily analysis in Seattle (based on the
random ef fects mpdel) vyields negative (adverse) estimates for all of the
pol | utants except ozone. 802 and NO2 are statistically significant for
the average person at the 1 percent |evel.

The other panel analysis was the exam nation of air pollution
effects on health status. Except for ozone, we observed few
statistically significant effects of air pollution on health status.
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This was was true for both sites, for children and adults, for the
general population, and for the susceptible (i.e., sickly) population.
We did observe some significant results for sone of the scales for
specific diseases. The significant results were of mxed sign. O the
18 non-ozone results, only one was significant at the 10 percent |evel
If there were no true effect, we would expect to see about two
significant findings just at random at the 10 percent |evel.

The results for the annual analyses are mxed. Those results are
obtained by allowing for correlated responses in a manner that ignores
the possibility that individuals may geographically sort thenselves out
in response to air pollution. Hence, the method has enbedded in it the
same potential for bias that exists in pure cross-sectional approaches.
Except for ozone, only 2 out of 18 results are significant at the 10
percent level. One is negative (adverse) and the other positive
(beneficial). If there were no true air pollution effect, we would
expect to get one positive and one negative significant result at
random

By and large, the results for the pollutants other than ozone are
not statistically significantly different from zero, aside from those
obtained fromthe aggregated daily approach. For the other three
met hods, no pollutant showed nore than two significant effects out of an
average of eight possibilities each.

The effects of pollution on health did not vary in any easily
general i zabl e way between Seattle and Dayton. The overall effects of
pollution were the sane for each city as they were for both taken
together, i.e., generally nixed and insignificant with a tilt toward the
positive. Breaking it down by pollutant, there were many instances of
varying results, but the general summary given above for both cities
together could apply alnost as well to each considered separately.

Qur several analyses of susceptibles provided results that were
consistent with those of the population as a whole. However, the
failure to find a greater sensitivity to pollution anong susceptibles
probably reflects our lack of precision. For exanple, in the before-
and-after comparisons of the internediate termeffects of air pollution
on health status, we generally found larger effects for susceptibles.
These |arger effects were not large enough to conpensate for the
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reduction in sanple size. In a general population study of the nonaged,
there are few very susceptibl e individuals.

This summary of our findings should not be construed to nean that
air pollution has no appreciable or significant adverse effect on health
outcomes. There are a number of nethodol ogi cal reasons why we coul d
have obtained these largely null findings, or in the case of ozone, a
counterintuitive result. In the following, we discuss 'these findings
with special attention to the nethodol ogical |essons to be drawn.

OZONE

It is so coomonly assumed that air pollution is bad for health
under all circunmstances that our finding that ozone is frequently
associated with significant beneficial short-run effects seenms puzzling.
There are a nunber of nethodol ogical or threshold explanations for why a
pol lutant would show no ill effect on health in a given study. It is
more difficult to understand how an air pollutant could be consistently
found to have a significant association with inproved health. W
suspect that the ozone results are due to a confounding of ozone with
met eor ol ogy or some other omitted variables that have an independent and
beneficial effect on health outcomes. The levels of ozone in these two
cities may be I ow enough that the adverse effects of ozone are
outwei ghed by any beneficial effects of the omtted but correlated
expl anatory vari abl es.

Qur ozone findings are not inconsistent with chamber studies and
prior observational analyses. Chanber studies have indicated that ozone
exposure at levels as high as 0.3 to 0.4 ppm can be tolerated without
adverse effects by individuals sitting quietly in the chanber (Adans et
al., 1981). Exercising individuals demonstrate acute effects at nuch
| ower |evels, usually starting around 0.20 to 0.24 ppm (Avol et al.

1983; Brookshire et al., 1982; Delucia and Adans, 1977, Evans et al.,
1976). Experts in chanmber studies indicate that susceptible individuals
under exercise conditions may respond adversely at 0.12 ppm the federa
standard (Adans et al., 1981). Only a snall number of the chanber
studies have used levels below 0.12 ppm Few have recorded effects

bel ow about 0.2 ppm even for exercising individuals (Folinshee et al.
1978; Javitz et al., 1983).



-89 -

Thus, there are no chanber data to suggest that ozone
concentrations well below the federal standard produce neasurable or
appreci abl e short-term adverse effects. The effects threshold appears
to fall sonmewhere between 0.12 and 0.4 ppm depending on the
susceptibility and activity of the exposed person

A nunber of studies have suggested no ozone effect or even a
positive effect on free-living popul ations, especially where ozone
| evel s studied have not been high. For instance, reanalysis of data
from Houston by Javitz et al. (1983) at SR International indicates a
smal |, consistent drop in the probability of synptons as the ozone |eve
increased from zero to concentrations of 0.03 to 0.09 ppm  Once ozone
| evel s reached 0.12 ppm the probabilities of many synptonms began to
increase and continued to do so as ozone |evels rose further, thus
replicating the findings of the chamber studies. It should be noted
that these are synptons and not lung function nmeasures.

The levels of ozone to which our sanple was exposed fell well bel ow
the range at which the chamber and Javitz studies showed adverse
effects. Seattle experiences very little ozone exposure over the one-
hour federal standard. The exposure in Dayton is substantially greater,
but even the highest concentrations did not exceed 0.2 ppm-below the
ozone |evel at which nost chanber studies have shown effects for
exerci sing individuals.

The ozone results may reflect the confounding of ozone with some
omtted but beneficial variable. For exanple, the absence of variables
on cloud cover may inpart a small but statistically significant bias to
the results fromthe individual daily time series if individuals in
Seattle are less likely to be ill or feel blue when it is sunny.® A
simlar bias may have been introduced into the aggregated daily tine
series by the onission of nmeteorological variables,

Al ternatively, the ozone effect may be related to the short-term
positive reaction that many people have on being exposed to |ight
negative ions. Negative ions are produced by electrical equipnent
(including ionizers, of course), thunderstorms, sunshine, and w nd.

'our anal yses adjust for precipitation and tenperature, but not
sunshi ne.
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Regardl ess of the source, production of negative ions is al nost

i nvariably acconpanied by the production of |ow levels of ozone. The
positive reaction to negative ions may reduce synptons, the recognition
of synptons, or conplaints of synptonms. In our study, these would
translate into fewer visits to physicians and |less sick |oss.

Despite the short-run positive association of ozone with healthier
outcones at |low levels of pollution, there may be underlying and ongoing
damage associated with this |lowlevel ozone exposure which would only be
expressed in long-termeffects. The health status findings for ozone in
Seattle are consistent with a longer term adverse effect, when the short
term use of services and sick-1oss exhibit a positive association.

Detels et al. (forthcom ng) report possible long-term effects of oxidant
exposure, including possible cumulative damage associated with ozone
concentrations below 0.10 ppm  OQobviously, further research into this
entire problem would be very hel pful.

METHODS EFFECTS
Aggregated Daily Time Series

Qur results are sensitive to the methods used to do the anal ysis.
In particular, the aggregated day-to-day approach yields many
significant findings, nost of which are of the wong sign, i.e., they
indicate a beneficial association of air pollution with health outcones.
For a given pollutant, the effects do not even have the sanme sign for
the two different sites and the two outcones anal yzed. Despite the
significance of the results, the magnitude of the effect is typically
quite small. A doubling of the air pollution level is usually
associated with a change in the health indicator of about 2 to 4
per cent.

Wiy the aggregated daily approach "m shehaves” is an open question
at this point. Gven the size of the inference statistics and the snal
effects of a doubling in the level of air pollution, it is clear that
this nethod has the precision to pick up small effects, including those
where a doubling of the air pollution Ievel would be associated with
changes in visit rates and sick-l1oss of only 2 percent. W suspect that
the aggregated tine series may be picking up the beneficial aspects of
other factors correlated with higher levels of air pollution. A likely



- 91 -

suspect is the day-to-day variation in meteorological conditions; our
specification controlled for nmonthly and day of the week effects, but
not cloud cover, tenperature, or precipitation. Watever the

expl anation, this easy-to-use nmethod clearly requires nore scrutiny
before a decision is made as to whether it should be applied routinely
in measuring air pollution effects.

Individual Daily Time Series

In contrast, the individual daily approach consistently vyielded
estimates of adverse effects of air pollution on tine lost to illness--
with the exception of ozone. On that basis alone, this technique nay be
the nore pronmising for valuing the benefits of regulating air quality
than the aggregated daily time series approach. In addition, there are
two net hodol ogi cal rationales for favoring the individual tine series
approach. First, in this approach, we use the individual as his or her
own control and estimate the response to air quality and weather, rather
than trying to get sone sort of average response over a popul ation that
is quite heterogeneous in the response. Thus, we can tell whether
susceptibles or smokers or children are nmore or |ess responsive than the
rest of the population by doing a neta-analysis on the estimted
individual responses. Second, allow ng each person to act as his or her
own control reduces certain exposure and data problens. |f a person
lives in a dusty or poorly ventilated house, and dust affects the
person's behavior, it will be captured in his or her coefficients.
Third, we can do a much better job of estimating individual exposures in
the individual daily approach than in the aggregated approach. |In the
former, we can use our estimate of the person's exposure, based on work
and home locations. In the latter, we can use only one value of each
pol lutant for everyone, so we measure the individual's exposure with
more error. That measurenent error yields biased estinmates of the true
response to air pollution

This study was the first to apply this technique to a genera
popul ation.  The pattern of adverse effects of air pollution detected in
a moderately polluted city is evidence that the technique can detect the
adverse effects of air pollution when other techniques (e.g., cross-
sectional or aggregated time series) fail to give neaningful results.
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Before we nmake too much of this finding, however, we should renenber
three things: First, this is in essence a case study of the technique
and is subject to all the linmtations of a case study. Second, the

met hod yiel ded an unexpected negative correlation between the paraneter
estimates and their standard errors. And third, the individual daily
approach is a costly one. Nevertheless, we find the results interesting
and the theoretical argunments convincing enough to warrant further study
of this technique. In the second phase of this research for EPA we
will examne this technique nmore closely. That work will include (1)
simulation analysis to study the question of correlation between the
coefficients and their standard errors; and (2) applications of this
technique to other outcomes and to data fromthe Dayton site.

Annual (“Cross-Sectional”) Analysis

For the reasons stated in the Introduction, we had expected the
annual ("cross-sectional") approach to have the greatest |ikelihood of
produci ng "perverse" results. Instead, except for ozone, the annua
cross-sectional analysis basically showed no effects for air pollution
on the use of health services or tine lost to illness. There are five
possi bl e explanations for this. First, the absence of a result is
consistent with there being a true adverse effect that is wiped out by
the sorting phenomenon. If individuals who are nore susceptible to the
adverse effects of air pollution mve to less polluted areas of the
city, then the estimated effects of air pollution will be biased toward
zero or could have the "wong" sign. Al though we used very good
measures of health status, relative to those available on nost genera
popul ation data sets, the neasures are not perfect and our estinmates
could be biased. Second, there may be no true effect in the range we
are observing and sorting may not be a problem Third, the absence of
an effect could be due to aggregating over a year. The largest illness
effects may occur in the winter and the highest pollution levels in the
sumer.  The annual analysis should not "see" that tine difference, and
thus woul d find no association. Fourth,'the use of an estimate of air
pol | ution exposure based on anbient air at nonitoring sites will contain
a substantial amount of neasurenment error. Al other things equal, this
measurenent error will bias the estimates of air pollution toward zero
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in proportion to the ratio of the neasurement error to the true error in
the equation (see Theil, 1971, pp. 607-615). Thus, there could be a
smal | but inmportant true adverse effect of air pollution that would not
be detected because we relied on a proxy for true air pollution

exposure. Fifth, we may not have detected an adverse effect of air

pol luti on because of lack of variation in the exposure measure. As the
tables in the appendi x on exposure indicate, there is much |ess
variation in average exposure over a period of a year, than there is
over a period of a day. Mst of what little variation we do have at the
annual level is due to geographical differences in pollution |evels.

The smaller the variance in the explanatory variable (e.g., SOZ), t he
larger the standard error of its coefficient.

Intermediate-Term Health Effects

We had expected that the use of a variant of the before-and-after
conmparison would allow us to detect some adverse internediate-term
effects of air pollution. The technique has the advantages that: (1)
the individual acts as his or her own control, thus reducing any bias
from geographi cal sorting; and (2) the inclusion of entry health status
as a covariate should reduce the error variance substantially and
increase the precision of the regression, because health status is
fairly stable over time. However, we found that of the non-ozone
findings for general health status and adult lung function, there were
about as many significant results as one would expect at random

Does this mean that there are no true health status effects in our
two cities at these noderate levels of pollution? W think such a
concl usion would be inproper. The absence of a significant effect may
be attributable to lack of precision. Gven the neasures we had of
general health status, lung function, and the variation in air pollution
across individuals, we had the precision to detect an effect of air
pollution if it were as large as the adverse effects of smoking one-
half to one pack of cigarettes a day over the same period. That is a
very large effect, and npst people woul d be concerned if air pollution
had a substantially smaller effect than that. The culprit for our |ack
of precision is again the lack of variation in air pollution over
periods of time |onger than a few days. (See the discussion of exposure
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in Sec. Il for the variation in exposure across individuals.) Low
variation in the pollutant nmeasure inplies a large standard error on the
estimated effect of air pollution.

To get away fromthis problem of |ow precision, one needs to have a
data set with several characteristics. First, the nunber of
participants nust be substantially larger. A tenfold increase in our
sanple size would reduce the detective effect to that of five to seven
cigarettes a day. Second, there should be a wder range of variation in'
the air pollution exposure of individuals. Al other things equal, the
standard error of the estinmate coefficient will go down as the square
root of the variance of the exposure neasure. Third, an increase in the
number of susceptibles, who appear to have larger effects fromair
pol lution, would nmake it easier to detect an effect. Finally, better
measures of actual exposure (via personal nmonitoring or mcro-
environmental analysis) would reduce the bias in the estimte
coefficient and enhance our ability to detect neaningful adverse effects
of air pollution.

Unfortunately, data sets with these characteristics and a
conprehensive set of neasures on health outcomes (use of nedica
services, time lost due to illness, and health status) collected on a
panel basis are expensive and time-consuming to generate. In the short
run, it will be inportant to see what we can learn from existing genera
popul ation data sets, despite their inportant flaws. One very promsing
avenue of research is the further application of the Wittenore-Korn
technique to tine series data on time lost due to illness and to the use
of medical services. Qur work clearly suggests that this technique can
be useful in the assessment of short-term effects of air pollution.

Before enbracing the individual daily approach or discarding the
others, however, it is inportant to realize that our findings are based
on only two sites. In fact, the individual daily approach was applied
to only one health outcome in one site. In addition, this is the first
tinme that this technique has been enpl oyed on a general popul ation. The
only way to be sure that the patterns we have found are "real” is to do
further research in the same vein: including additional neteorologica
data to control for factors which may explain the positive association
between ozone and health outcomes, and by applying a sinilar set of
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approaches to several cities or data sets. ldeally, future analysis
shoul d include data froma | ong enough time series on people in a
general population to enploy the individual daily tinme series approach.
Further research along those lines should allow us to reach a conclusion
as to which approach is the nost effective for valuing the regulation of
air quality.
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Appendix A

SELECTION OF DATA

The first analytic choice we had to nake was to select a data set
for the analysis. W looked for a data set with information on health
status, sick-1oss days, and use of health services for a general
popul ation (e.g., nore than merely a subpopul ation susceptible to
cardi opul monary problens). Below we briefly describe the criteria that
we used in evaluating data sets, the advantages and disadvantages of
each data set, and our reasons for the final selection.

For the evaluation of effects of air pollution on health outcones,
we exam ned the follow ng data sets:

Heal th and Nutrition Examination Survey (HANES) | and Il
Heal th Insurance Experinent (H E)

Heal th Interview Survey (H'S)

National Medical Care Expenditures Survey (MCES)
National Medical Care Wilization and Expenditure Survey
( MNCUES)

[ 2 I N R S

CRITERIA FOR EVALUATION
In evaluating the alternative data sets, we used seven criteria:

1. A preference for panel over cross-sectional data.

The ability to create good synthetic (proxy) neasures of air
pol | ution exposure.

The ability to create good synthetic neasures of weather.
Compr ehensi veness of a single data set.

Presence of valid and reliable measures of health status.
Adequate within-site data.

-~ oo o1 B W

Variation across sites in levels and types of air pollution.
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Panel Versus Cross-Sectional Data

We would prefer a panel (cohort) data set over a cross-sectiona
one. In a panel data set, the |ongitudinal neasurenents on each
individual allow us to control for unobservable characteristics of each
individual.  Thus, we do not have to rely on the untestable cross-
sectional assunption that the unobserved characteristics are
uncorrelated with the observed independent variables (including air

pol lution). If this assunption does not hold, cross-sectional data can
yiel d biased estimates of the effects of air pollution. The direction
and magni tude of the bias cannot be determined a priori. For exanple,

if snokers are less likely to move away from snoggy areas (and if the
snmoki ng neasure has measurenent error), then cross-sectional data wll
overstate the effect of air pollution on cardiopul nonary problens. |f

i ndividuals who are susceptible to cardiopul nonary conplaints mve from
smoggy areas to less smoggy areas (and if the health status nmeasure has
measurenent error), then cross-sectional data understate the effects of
air pollution.

In contrast, with a panel data set these unobserved effects can be
netted out. For the ANOCOVA case, see the fixed effects nodel (Mddal a
1971; Searle, 1971). For our proposed nethods for the analysis of short-
term health effects, see Wittenore and Korn (1980).

A panel study has three other mgjor advantages over a Cross-
sectional study. First, it usually provides finer detail on tining
The finer detail on timng of health events allows us to create better
weat her and air pollution exposure neasures than is possible with data
aggregated over several nonths. The better the weather and exposure
measures, the lower the bias in the air pollution variable coefficients.
Second, panel data sets keep the novers and deaths in the sanple,
whereas retrospective surveys frequently lose data on novers and deaths.
To the extent that air pollution may cause rmoves or earlier death, cross-
sectional data sets will tend to have sites with sanples with different
unobserved characteristics, which will yield a biased set of estimates.
Third, with a panel data set, we can check any assunptions about
aggregation over tinme by examining the response in disaggregated as well
as aggregated form
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Quality of Air Pollution Exposure Measure

Ideally, we would like to know each individual's history of
exposure to air pollution. This would include data on levels and tinmng
of all pollutants from any source--snoking, other indoor pollution
sources, and anbient air sources. Unfortunately, no existing data sets
continuously nonitored each person's exposure to air pollution, with one
exception.! |Instead, we nust create synthetic neasures based on
avai lable data. These synthetic exposure estimates necessarily neasure
exposure with substantial error. But that measurenent error can be
reduced by selecting data sets that provide finer detail on geographic
|l ocation and the timng of health events.

This may be viewed as a classic errors-in-variable problem Ar
pol lution exposure is measured with error because we do not have
continuous nonitoring for each person. Instead, we use a proxy variable
such as a weighted average of surrounding nonitoring stations. The
finer the level of data on work and home |ocation, the closer the
synthetic neasure will be to the person's true anbient air exposure.

The closer the neasure to the true value, the smaller the variance in
measurenent error and the smaller the bias in the estimted coefficient
for the air pollution variable (Muddala, 1977, pp. 292-294). O her
variables will also be affected by measurenent error in the exposure
variabl e because the measurement error in one variable transmts bias to
all correlated independent variables. The finer the level of detail on
location, the less the transmtted bias will be.

The same argunent holds for the quality of the tenporal match of
health outcones and air pollution exposure. Some data sets ask how nuch
tinme the respondent has |ost fromwork or school due to illness during
the last several nmonths. Wthout know edge of the dates of illness, we
cannot create an accurate measure of air pollution that the respondent
was exposed to immediately before the illness. Sinmilarly, we run the

risk that we will inappropriately estimte sickness from five months ago
as a function of last nmonth's air pollution if we use a data set that
has information based on questions of the form Have you ever . . .?

'The only data set available to date that continuously monitored
each person's air pollution exposure was collected in. EPA's recent U ban



- 100 -

The quality of the match is especially inportant for transient
condi ti ons. Some respiratory responses to air pollution are short-
termand not cunulative. The poorer the tenporal nmatch and the nore
variable the exposure, the nore likely we are to nmisestimate the effects
of air pollution on flare-ups of chronic respiratory diseases.

Quality of Weather Data Match

Ideally, we would like to control for the weather that an
individual is exposed to in order to avoid attributing to air pollution
the adverse health effects associated with bad weather. For exanpl e,
Denver tends to have its worst air pollution in the winter. But wnter
is also the season with the highest rate of cardiopul nonary problens.
Failure to control for weather would overstate the adverse effects of
air pollution if bad weather and air pollution were positively
correlated, and understate the effects of air pollution if the two were
negatively correlated. A data set that fails to provide sufficient
information on location and tinmng, to allow matching with weather data
is therefore undesirable

Comprehensiveness of Data Set

Ideally, we would use the sane sanple and variable specifications
for all health outcome measures. For exanple, we should avoid taking
health status outcones fromone sanple and sick | oss from another. By
using the sane sanple, we have the sane target population and the sane
meani ng for each independent variable. Thus, when we say the effect of
a variable is such and such, it neans the sane thing for each health
out cone.

By using the same data file, we can also neasure the degree to
which the outcones are correlated, that is, the extent to which large
changes in health status are associated with large expenditures and sick-
loss time. Knowing this correlation allows us to determine the pattern
of incidence of adverse effects. Are they limted to few people or to
many? |f the responses are highly correlated, then we may be able to

Scale Study in Washington, D.C., and Denver, Colorado. However, that
data set does not contain any information on health outcones.
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use a sinmple outcome neasure as a good proxy for all the dinensions of
heal t h.

Valid and Reliable Health Measures

For this analysis, we need valid and reliable neasures of genera
health status as well as the presence and severity of certain specific
health conplaints (e.g., chronic bronchitis). W wll need a genera
health status nmeasure if we are to detect the effect of air pollution on
health status in a population not suffering from chronic cardiopul monary
probl ens. In such a population, the effect of air pollution my be
headaches, general nalaise, and other "diffuse" problemns.

We also need to measure the presence and severity of specific
cardi opul nronary problens. .The data on presence of a condition wll
allow us to identify the population that is nost susceptible to air
pol lution and to neasure that susceptibility. The data on severity of a
condition is inmportant because we expect that the ngjor effect of air
pol lution is to worsen existing conditions instead of cause themin the
first place.

For both general and specific conplaints, we would prefer objective
continuous neasures (e.g., lung functions froma spironetric
exam nation) or scales based on multiple items over the comonly
avai |l abl e single-itemresponse (e.g., How would you rate your health--
excel lent, good, fair, poor?). The coarser neasures have suppressed a
good deal of information about health status in their sinplification.
That additional information would nmake it easier to detect smaller
adverse effects of air pollution.

Adequate Within-Site Data

In our original proposal, we suggested that all of the analysis
shoul d be done within a site, with separate results for separate sites.
There were two maj or reasons for that suggestion. First, one unit of an
air pollution measure is not the sane thing in two different sites
because different sites use different equipment and naintenance
schedul es, and set different internal standards. Second, any omtted
variables correlated with site (and hence air pollution) can lead to
bi ased estimtes of the response surface. Third, the response of those
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accustomed to air pollution exposure may be different for a given |eve
of pollutant fromthat of persons not so accustonmed. Thus, while there
may be a dose-related response at each site, the response to a given
level may be quite different across sites.

The choice of panel versus cross-sectional data and a desire for
finer geographical and tenporal detail are related to this point.

First, in a cross-sectional data set, all of the wthin-person variation
in air pollution exposure has been lost. If there is no within-person
variation for an individual in air pollution, we cannot identify the

i ndivi dual conponent in the error term To the extent that this

i ndi vi dual conponent may be correlated with health status or air
pol | ution exposure, the parameter estimates may be biased. Second, in a
cross-sectional data set, nost if not all of the within-site variation
in air pollution has been lost if we cannot identify PSUs smaller than
SMBAs; staggered surveys such as the H'S are an exception. If there is
little or no within-site variation in air pollution, we cannot identify
the site-specific conmponent in the error term as Hausman, Ostro, and
Wse have shown, this can be inportant. Again, to the extent that
omtted site effects are correlated with unobserved variables (including
pol lution mx and level), the parameter estimates will be biased. In
either case, whether there is bias or not, failure to account for
correlation anmong observations yields inefficient paraneter estinates
and incorrect (biased upward) inference statistics.

In addition to possible bias and efficiency concerns, the
suppression of intrasite and intertenporal variation can cause a najor
loss in precision. There is substantial intertemporal and intrasite
variation in air pollution, which is lost in cross-sectional data
especially if the geographic detail is of low quality. The standard
deviation of a variable's estimated coefficient is inversely related to
the variance of the variable. Thus, elimnating intrasite and
intertenporal variation in air pollution reduces the variance in the
exposure measure, and increases the standard deviation of the estinated
coefficient.

Even if we pool all of the sites in the estimation phase, we would
like to have enough respondents in each site so that we could find
susceptibles in the heavily as well as lightly polluted sites. |f this
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condition holds, we will be able to contrast the response of
susceptibl es and nonsusceptibles to air pollution.

Variance in Air Pollution Across Sites
There shoul d be substantial variation in the level and mx of air
pol lutants. W need variation in the levels of air pollutants in order
to detect the response to air pollution. W need variation in the mx
to determine the different effects of each pollutant. For exanple, TSP
may be more cunul ative while oxidants may be transitory in their inpact.

ALTERNATIVE DATA SETS

Using the criteria just described, we exanmined five data sources:
HANES | and Il, the HYE the HS, NMCES, and NMCUES

HANES | and Il

The HANES surveys by the National Center for Health Statistics
(NCHS) provide cross-sectional data on health and nutrition. Conducted
in 1971-1974 and 1976-1980, they provide data on some 28,00 and 21, 000
individuals in national probability sanples, respectively. HANES
determned the preval ence of a number of chronic conditions including
coughi ng, asthma, hay fever, and other cardiopul nonary conditions.
HANES | provides no self-reported nmeasure of the severity of each
respiratory conplaint, but HANES || provides data on total work or sick-
| oss days during the past 12 nonths that were attributable to
respiratory problenms (other than flu and colds). There are no data on
dates of sick loss. Both versions have spironetry measurenents of |ung
function for some subset of the respondents. The only general neasure
of health status is the question of whether health is excellent, good,
fair, or poor.

The HANES data have extrenely linmited information on use of health
services. Mst questions are of the form Have you ever seen a doctor
or been hospitalized for condition X? There is no information on how

much the person has spent on the condition, or when and how often he
spent it.
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The ability to create synthetic nmeasures of air pollution exposure
is limted. The available geographic detail specifies the respondent's
SMBA only, and then only for the largest SMSAs. Both HANES data sets
contain information on smoking. Neither contains information on other
i ndoor air pollution sources.

HIE

The Health Insurance Experiment is a randomzed trial, designed to
study the effects of cost sharing in HM»s on the health status, health-
care use, and sick-loss of the nonaged population. The HE enrolled
some 7,770 individuals in six sites (Dayton, Chio; Seattle, Washington;
Fitchburg, Massachusetts; Franklin County, Mssachusetts; Charleston,
South Carolina; and Georgetown County, South Carolina). Wile none of
these sites were extrenely polluted during the md- and |ate 1970s, when
the HE data were collected, each had substantial air pollution. None
of them net federal ambient air quality standards during that period.

In addition to the exclusions conmon to all the other data sets
(e.g., the mlitary and the institutionalized), the HE excludes the
aged (62 and over) and the top seven percent of the inconme distribution.
These twin exclusions (especially the exclusion of the elderly), the
smal | er sanmple size, the small number of sites, and the absence of a
severely polluted site are the HHE's major linmitations.

The HE is a panel study. It contains repeated neasurements of
health status (general and condition specific), as well as dated
information on health-service use and sick-l1oss days. The use-data
include information on diagnoses, procedures, and medication prescribed
and purchased. The general health status neasure is a Likert-type
summated rating scale based on 22 questions. Thus, the construct is a
subj ective assessnent of personal health status. Its reliability and
validity have been extensively studied (Ware, 1976; Davies and Ware,
1981). Manni ng, Newhouse, and Ware (1982) have shown that this measure
performs significantly better than Excellent/Good/Fair/Poor in a study
of health-care utilization. The study contains several neasures of
chronic and role limtations, the presence or absence of 26 chronic
conditions, and severity neasures. For several of the chronic
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conditions, there exist multiple nmeasures of preval ence and severity
based upon both self-report and physical examnation (with lung function
measurenent) by an MD. The physical exam was adnministered to a random
subsanple at enrollment in the study and to everyone at exit. The
report by Foxman et al. (1982) describes the neasures for chronic
obstructive airway disease

We can build better synthetic neasures for the HHE than for any of
the other data sets. The H E contains information on home zip code,
dates of noves, work zip code and hours worked, and (own and famly
menbers') snoking status and history. Thus, we can build exposure
measures that incorporate data fromthe nonitoring stations not only
nearest to the respondent's home but also to his work location. This
definitely has less measurement error than an SMSA average variable.
Also, it allows us increased precision through capturing the within-
site variance in the air pollution nmeasure.

The H E has one further advantage over all other data sets. The
H E random y assigned insurance plans of varying levels of generosity to

enrol | ees. In other data sets, famlies can choose their own coverage
by buying individual policies or by selecting which work-related policy
shoul d be used for dependents. In the HE, random assignnent breaks

that correlation so that we can determine what is sickliness (here in
the cardi opul nonary sense) and what is insurance coverage

HIS

The Health Interview Survey conducted by HCHS is a continuing
survey of health-related problems in the United States. Al though there
are repeated waves of the survey in each site, the survey does not
resanple the same set of individuals, except by accident. As a result,
the HS has to be considered a cross-sectional survey if the unit of
analysis is to be an individual. Although simlar in content, there are
differences anong the waves in the specific information elicited from
respondents.  About 120,000 individuals are sanpled each year.

H'S determned the preval ence and severity of several chronic
conpl aints including cardiopul monary conditions (e.g., asthna,
bronchitis). The severity questions ask (1) whether the individual is
bothered by the condition all the time, often, once in a while, or
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never, and (2) when it does bother him whether he is bothered a great
deal, some, or very little. Because H'S is a survey, there are no data
on lung function. The H'S data lack a general health nmeasure but do
contain information on chronic and role limtations due to ill health,
and which chronic condition is the main source of that limtation.

The H'S data contain fairly detailed information on health-care
utilization and sick-loss days during the past two weeks. The survey
contains questions on nedical and dental visits, hospitalizations, work
or school -1o0ss days, bed disability days, and restricted activity days.
In sone waves of the H'S, the date of the visit or sick-loss day is
provi ded.

The ability to create synthetic neasures of air pollution is
limted. The available geographic detail specifies SMSA only, and that
only for the largest SMSAs. Because the responses on health-care use
and sick-loss are dated or linmted to a specified two-week period, the
quality of the tenporal match of health events and air pollution is
good. The quality of the tenporal match is probably exceeded only by
that for the HE data. The H'S contains information on snoking, but not
on indoor air pollution sources.

NMCES and NMCUES

These two surveys are very simlar in content and construction.
NMCES was conducted by NCHSR on a national probability sanple of 40,320
people. NMCUES was conducted by NCHS on a national probability sanple
of 17,000 people plus 24,000 people from the Medicaid population of four
states. Each survey conducted repeated interviews for the same sanple
of individuals, with all responses and health events dated. Thus, the
primary data are in panel form Unfortunately, the public use files
released from these two surveys have aggregated the responses into a
cross-sectional data set.

The information on health status is nore linmited than on the other
data sets. The two surveys contain data on general health status (the
excel | ent/ good/fair/poor question) as well as responses to questions on
chronic and role linitations. Information on the existence of a chronic
condition was collected only if there was a nedical visit, sick-1oss
day, or limtation due to that condition. Thus, an individual with a
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chronic condition in good control (i.e., no flare up) cannot be
di stingui shed from soneone w thout the condition. To the extent that
air pollution aggravates a health condition, we cannot distinguish
preval ence from severity in these two surveys. The information on
conditions is not available in the cross-sectional version of the files.

Both NMCES and NMCUES have detailed information on health-care
utilization and sick-l1oss. These include visits, hospitalization,
expenditures, bed, disability and restricted-activity days, and the
condition for each. There is detailed information on insurance coverage
and rei nbursenent. Except for the HHE, this data set has the nost
conpl ete insurance information of the files considered

The severest drawback of these data sets is their inability to
produce nore than crude synthetic measures of air-pollution exposure.
The NMCUES is expected to identify the respondent by SMSA only if the
respondent is in one of the largest SMSAs. NMCES identifies census
regi on and SMSA size but does not name the SMSA.  The quality of the
tenporal match with the underlying file could be quite good because
health events are dated. For the cross-sectional versions, the tenpora
match will be poor because we do not know when the event occurred over
the several nonths period surveyed. Neither data set has snoking data

CHOICE OF DATA SETS

After reviewi ng the characteristics of the available data sets for
anal yzing the adverse effects of air pollution on health outcomes, we
have decided to use the HE  However, because the H E has some
limtations, and other data sets some advantages, we propose that the
second phase of the RAND cooperative agreement with EPA use augnented
versions of some of the other candidate data files, if certain of their
shortcom ngs can be overcone.

W prefer to use the HHE for our initial study because:

1. The HE is a panel study while the others (in their present
form are cross-sectional. As nentioned earlier, with panel
data on individuals, we can avoid the potential selection bias
in cross-sectional data sets
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2. The HE data can be augmented with both weather and air
pollution data to provide a better geographic and tenpora
mat ch than is possible with other data sets. This reduces the
measurenent error in generating an estimate for air pollution
and weat her exposure. The |ower the neasurenment error, the
| ower the errors-in-variable bias in the estimtes of the air
pol lution and weather coefficients.

3. The HE has the nost conprehensive set of health outcone
measures: health-care utilization (diagnosis, procedure, and
medi cations), sick-loss days, self-perceived health status
(general and condition specific), preval ence and severity of
chronic conplaints, and lung function. Qher data sets provide
only a subset of these data

4. The health status measures in the H E have been validated and

shown to be as reliable as or nore reliable than those on other
data files.

The H E has the follow ng di sadvant ages:

1. The HE s exclusion of the elderly is an inportant limtation
because they are a susceptible population that may behave
differently fromthe nonaged. The effects of this linitation
can only be studied by checking HE results with other data
sets.

2. The HE has a smaller sanple size than the other data sets.
Neverthel ess, given the |esser precision and the bias
associated with cross-sectional data with linmited geographic
detail, the HE s finer geographic and tenporal detail wll
partially offset this linmitation.

3. The H E sites cover a nore linmted range of air pollution. The
effect of this limtation can only be studied by checking HE
results with other data sets that have a w der range of air
pol lution |evels.
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W believe that the advantages of the H E outweigh its disadvantages.
The discussion above centered on measuring (dose) responses in
ternms of health outcones--utilization, health status, or sick |oss--
as they relate to air pollution. One of the mgjor purposes of our work
is to estinmate how people value changes in levels of air pollution. To
do so, we will require measures of the value of changes in health-care
use, health status, and sick-l1oss induced by changes in air pollution.
W will need data on the cost of services, the value of health status,
and the opportunity cost of time. O the data sets considered, only the
H E, NMCES, and NMCUES provide data on the cost of health services. For
the cross-sectional versions of NMCES and NMCUES, the data have been
aggregated so that we cannot separate cardiopul monary from other health
services (e.g., nental health treatment or maternity care). O the data
sets considered, only the HE has sufficient |abor narket data to
deternmne the opportunity cost of time. Wrk on this issue is now being
done as part of the HHE's research for the Department of Health and
Human Services. W hope to use these results in our evaluation of sick-
| 0ss.

Two evaluation problens remain. First, it is necessary to evaluate
changes in health status. Second, none of the data sets avail able has
adequate sanple or data to estimate the effects of air pollution on
mortality. Such an analysis will require the use of other files, or
novel ways of using existing files.
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Appendix B

STATISTICAL METHODS

To study the effect of air pollution on annual rates of illness and
use of services, we will examne the response of participants in terns
of their annual nunber of days lost due to illness and annua
expenditures for ambulatory nedical care. Rather than rely on the nore
common anal ysis of variance (ANOVA) or analysis of covariance techniques
(ANOCOVA), we have used a two-part nodel for anbul atory nedical
expenditures and a negative binomal regression nmobdel for days of
illness. These choices were dictated by two characteristics of these
two health outcomes. First, a large proportion of the HE participants
use no nedical services or have no time |lost due to illness. Second,
the distribution of expenses and days of illness is very skewed.

These characteristics inply that ANOVA and ANOCOVA techniques will
yield inprecise (though unbiased) estimates of the effects of air
pollution, even for a fairly large sanple size such as that in the HE
As Duan, Manning, Morris, and Newhouse (1983) have shown for use of
medi cal services, a nodel that exploits the characteristics of the
distribution of utilization can provide nore precise estinmates.

In this appendix, we describe our statistical methods. The topics
include: the two-part mpdel for estinmating outpatient expenditures, and
the negative binonmial regression nmobdel for estimating days lost to
illness.

TWO-PART MODEL FOR AMBULATORY MEDICAL EXPENSES

We use two equations to nodel the distribution of anmbulatory
medi cal expenses. The first is a probit equation for the probability
that a person will receive any outpatient service during a year. This
equation separates users from nonusers and therefore addresses the first
characteristic described above. The second equation is a |inear
regression for the logarithm of total annual outpatient nedical expenses
of users. The log transformation of annual expenses for the group of
users reduces dramatically the undesirable skewness in the distribution
of expenses anong users described as the second characteristic earlier.
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We therefore expect the estimates fromthis nodel to be nore robust than
those that mght be obtained from ANOVA and ANOCOVA nodel s on
untransformed expenses.

Mre formally, the first equation is a probit equation for the
di chot ombus event of zero versus positive anbul atory expense

where anbul atory expense is positive if Ili 2 0, 0 otherwi se; and X, is

a row vector of given individual characteristics (e.g., air pollution
and age).

The second equation is a linear nodel on the log scale for positive
ambul atory nedical expenses if the person receives any services:

ln(AMBsi | I,,2 0) = xiBZ + g,

wher e E(sZil x;, I, 2 0) = 0, x; is a row vector of given individua
characteristics and €5 isi.i.d. For the last equation, the error is
not assunmed to be normally distributed

The likelihood function for this nodel is mltiplicatively
separabl e because of the way the conditional densities are cal cul ated.
The separability does not depend on any assunption of independence
between errors in the two equations. In fact, the errors may be
correlated. Separability inplies that estimating the two equations by
maxi mum |i kel i hood separately provides the global full information
maxi mum | i kel i hood estinmates; see Manning et al. (1981), and Duan et al.
(1983, 1984). W therefore estimate the two equations separately.

If the error terms2 in the (log) expense equation were normally
distributed, then the expected anbul atory nedical expense would be



- 112 -
= 2
E(AMBsi) =Py exp(xiB2 + 0 52/2)
wher e
P; T Prob.i(AMBSi >0) = §(xisl),
¢ = normal c.d.f.,

and where the factor exp(0/2) is the adjustnent in the nmean for

retransformation in the second (or conditional) equation if &, were

2

normal Iy distributed. However, the normal assunption for e, is not

satisfied for the anbulatory expense data, because the resiéua
distribution is not nornmally distributed. As a result of this
nonnornality, the factor [exp(0%2)] is not the correct adjustnent in
the mean for the retransformation fromthe logarithmc scale to the
untransformed dollar scale and would lead to statistically inconsistent
predictions of the mean expenditure

Instead of the normal retransformation, we use the smearing
esti mates devel oped by Duan (1983). The snearing estimte, a
nonparanetric estimate of the retransfornation factor ¢ = E(exp(sz)), is
the sanple average of the exponentiated |east squares residuals. The
snearing estimate is statistically consistent for the retransformation
factor if the error distribution does not depend on the characteristics
X.

A consistent estinmate of the expected expense for anbul atory
medi cal services is therefore provided by

E(AMB$i) = P, exp(xi52)¢
wher e
¢ = I exp(fn Y, - xiﬁz)/n

wher e
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82 is a consistent estimate of 62.
Correlation in the Error Terms in the Two-Part Mode

Al'though we have observations for several thousand person-years of
data, we do not have that nunber of independent observations. The error
terms in our equations exhibit substantial positive correlations anpbng
fam |y nenmbers and over time for individuals. These correlations exist
in both equations. Failure to account for these correlations in the
analysis would yield inefficient estinmates of the coefficients and
statistically inconsistent estimates of the standard errors. As a
result, the inference statistics (t, F, and x2) calculated in the usua
way (without adjusting for these correlations) would be too |arge.

Al inference statistics (t, F, x° reported in this report have
been corrected for correlation, using a nonparametric correction simlar
to the random effects or intracluster nodel. The correction method is
fully described by Rogers (1983), based on prior work by Huber (1967).

NEGATIVE BINOMIAL MODEL FOR TIME LOST TO ILLNESS

We used a negative binomial regression nodel to estimate the
response of tine lost to illness to air pollution. The negative
binom al distribution is an appealing nodel because it can yield a large
proportion of zero days and a skewed distribution of positive days;
thus, the nodel can address the two characteristics of tinme |ost due to
illness mentioned earlier. The negative binomal nodel is nore
appealing for days than a two-part npdel because the negative binonial
model has discrete outcomes while the two-part nodel has continuous
outcomes. The negative binonmial regression nodel is nore appealing than
a Poi sson regression because the variance of days exceeds the nean; data
froma Poisson distribution should have equal nean and vari ance.

The negative binonial nodel can be generated from an underlying
Poi sson nodel. Let each individual's (i's) days be drawn independently
from a Poisson distribution. If different individuals have different
rates that are sanpled froma gamm distribution, then the observed
nunber of days follows a negative binomal distribution where



prob(days = n) = e —

The expected values for the sanple nmean and variance of annual days are

E(days) a/B

Var ( days) a(1+B)/ B
As long as B is positive, the variance exceeds the nean

In the results below, we assune that the parameter B can be
expressed as a linear conbination of observed individual
characteristics:

¢nf = - xiéi,

where X, is row vector of given individual characteristics, including an
intercept. W assune that a is a constant.

As noted earlier, there is a substantial positive correlation anong
fam |y menbers in their nunber of days of illness. In the days results,
we have corrected the inference statistics for this positive
correlation. This correction is simlar to that of the random effects
| east -squares nodel or, equivalently, the intracluster correlation
model .  The correction nethod is fully described by Rogers (1983), based
on prior work by Huber (1965).



